IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet oRClOx57 Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. This data sheet updated: 27th January 2006. $$CH_2CICH_2O_2 + CH_2CICH_2O_2 \rightarrow CH_2CICH_2OH + CH_2CICHO + O_2$$ $$\rightarrow CH_2CICH_2O + CH_2CICH_2O + O_2$$ (1) ## Rate coefficient data $(k = k_1 + k_2)$ | k/cm³ molecule-1 s-1 | Temp./K | Reference | Technique/ Comments | |---|----------------|-------------------------|---------------------| | Absolute Rate Coefficients | | | | | $k_{\text{obs}} = 1.1 \text{ x } 10^{-13} \exp[(1020 \pm 170)/T]$
$k_{\text{obs}} = (3.57 \pm 0.57) \text{ x } 10^{-12}$ | 228-380
298 | Dagaut et al., 1988 | FP-UVA (a,b) | | $k_{\rm obs} = (6.0 \pm 0.8) \times 10^{-12}$ | 295 | Maricq et al., 1993 | FP-UVA (a,c) | | $k_{\text{obs}} = 4.0 \text{ x } 10^{-14} \exp[(1376 \pm 60)/T]$
$k_{\text{obs}} = (4.5 \pm 0.4) \text{ x } 10^{-14}$ | 253-345 | Chakir et al., 2003 | MM-UVA(a,d) | | Branching Ratios | | | | | $k_1/k = 0.31 k_2/k = 0.69$ | 295 | Wallington et al., 1990 | UV-P-FTIR (e) | | $k_1/k = 0.43 k_2/k = 0.57$ | 296 | Yarwood et al., 1992 | UV-P-FTIR(e) | #### **Comments** - (a) $k_{\rm obs}$ is based on the measured overall second-order decay of $\rm CH_2ClCH_2O_2$, defined by $\rm -d[CH_2ClCH_2O_2]/dt = 2k_{\rm obs}[CH_2ClCH_2O_2]^2$. As described in detail by Lesclaux (1997), $\rm HO_2$ radicals formed from the subsequent chemistry of $\rm CH_2ClCH_2O$ (formed from channel (2)) are expected to lead to secondary removal of $\rm CH_2ClCH_2O_2$. The true value of k is expected to fall in the range $k_{\rm obs}/(1+\alpha) < k < k_{\rm obs}$, where $\alpha = k_2/k$. - (b) Flash photolysis of Cl₂ in the presence of C₂H₄-O₂-N₂ mixtures over the pressure range 33-533 mbar. CH₂ClCH₂O₂ concentrations measured by UV absorption spectroscopy using $\sigma_{250 \text{ nm}} = (3.64 \pm 0.39) \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$. - (c) Pulsed photolysis of Cl_2 in the presence of C_2H_4 - O_2 - N_2 mixtures at 1013 mbar pressure. Kinetics determined from time-resolved UV absorption spectra of $CH_2ClCH_2O_2$ and HO_2 . The values of $\sigma(CH_2ClCH_2O_2)$ obtained are ca. 13% greater than those reported by Dagaut et al. (1988). - (d) Modulated photolysis of Cl_2 in the presence of C_2H_4 - O_2 - N_2 mixtures over the pressure range 67-267 mbar. k_{obs} determined from analysis of modulated absorption waveforms in the wavelength range 215-270nm. The UV absorption spectrum of $CH_2ClCH_2O_2$ characterized simultaneously, agrees well with that of Dagaut et al. (1988) at $\lambda \ge 240$ nm, with $\sigma_{250 \text{ nm}} = (3.56 \pm 0.20) \times 10^{-18} \text{ cm}^2$ molecule⁻¹. At shorter wavelengths, cross sections are up to 20% greater. - (e) Steady-state photolysis of Cl₂-C₂H₄-O₂-N₂ mixtures at total pressures of 933 mbar with FTIR spectroscopic monitoring of the removal of C₂H₄ and the formation of CH₂ClCHO, CH₂ClCH₂OOH, and CH₂ClCH₂OH. The listed branching ratios were derived from the yields of CH₂ClCH₂OH and CH₂ClCHO relative to the decay of C₂H₄. ### **Preferred Values** ``` k = 3.3 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}. k = 4.2 \times 10^{-14} \exp(1300/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range } 220\text{-}380 \text{ K}. k_1/k = 0.37 \text{ at } 298 \text{ K}. k_2/k = 0.63 \text{ at } 298 \text{ K}. ``` ## Reliability $\Delta \log k = \pm 0.3$ at 298 K. $\Delta (E/R) = \pm 500$ K. $\Delta (k_1/k) = \Delta (k_2/k) = \pm 0.1$ at 298 K. ## Comments on Preferred Values The studies of Wallington et al. (1990) and Yarwood et al. (1992) provide reasonably consistent determinations of k_2/k , and the preferred value at 298 K is the average of these determinations. Chakir et al. (2003) also used steady state concentrations of HO_2 and $CH_2ClCH_2O_2$, inferred from their modulated photolysis study, to draw conclusions about the temperature dependence of the branching ratio for HO_2 formation, k_2/k . Using the 298 K values of Wallington et al. (1990) and Yarwood et al. (1992) as a reference, they estimated that k_2/k varies from ca. 0.3 at 253K to ca. 0.7-0.9 at 345 K. k_2/k is expected to tend to unity as T increases. The preferred values of k were calculated from the reported values of k_{obs} and k_2/k , using a methodology similar to that employed by Lesclaux (1997) for peroxy radicals with self reaction rate coefficients \geq ca. 2 x 10^{-12} cm³ molecule⁻¹ s⁻¹ at room temperature. k is estimated to be $k_{\text{obs}}/(1+0.5(k_2/k))$, with this approximation assuming that the secondary reaction of HO₂ with CH₂ClCH₂O₂ competes equally with its removal via HO₂ + HO₂. The preferred values are based on the temperature dependence kinetics results of Dagaut et al. (1988) and Chakir et al. (2003), and the preferred value of k_2/k at 298 K, with the assumption that k_2/k increases to \approx 1 at the high end of the studied temperature range, 380 K. The 298 K value of k_{obs} reported by Maricq et al. (1993) is ca. 50% greater than the average of the values of Dagaut et al. (1988) and Chakir et al. (2003), but is encompassed by the uncertainty range in the preferred value. The discrepancy is not fully resolved, but is partially explained by the greater absorption cross-sections for CH₂ClCH₂O₂ reported by Maricq et al. (1993). ## References Chakir, A., Brion, J., Ganne, J. P. and Daumont, D.: Phys. Chem. Chem. Phys. 5, 2573, 2003. Dagaut, P., Wallington, T. J. and Kurylo, M. J.: Chem. Phys. Lett. 146, 589, 1988. Lesclaux, R.: Combination of peroxyl radicals in the gas phase. In 'Peroxyl Radicals', edited by Z.B. Alfassi. John Wiley and Sons, 1997. Maricq, M. M., Shi, J., Szente, J. J., Rimai, L. and Kaiser, E. W.: J. Phys. Chem. 97, 9686, 1993. Wallington, T. J., Andino, J. M. and Japar, S. M.: Chem. Phys. Lett. 165, 189, 1990. Yarwood, G., Peng, N. and Niki, H.: Int. J. Chem. Kinet. 24, 369, 1992.