IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet oFOx33

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. This data sheet updated: 29th March 2005.

$$HO_2 + CF_3O_2 \rightarrow CF_3O_2H + O_2$$
(1)

$$\rightarrow C(O)F_2 + HOF + O_2$$
(2)

k/cm^3 molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients $\leq 2 \ge 10^{-12}$ $(4.0 \pm 2.0) \ge 10^{-12}$ $\leq 3 \ge 10^{-12}$	296 295 296	Hayman and Battin-Leclerc, 1995 Sehested et al., 1997 Biggs et al., 1997	FP-UVA (a) PR-UVA (b) DF-LIF (c)

Rate coefficient data ($k = k_1 + k_2$)

Comments

- (a) Flash photolysis of H_2O_2 in the presence of $CF_3CH_2F-O_2-N_2$ mixtures at a total pressure of 1013 mbar. Primary investigation of CF_3CHFO_2 radical kinetics, with CF_3O_2 radicals generated from the decomposition of product CF_3CHFO radicals. Decays in transient absorption signals (with contributions from CF_3CHFO_2 , HO_2 and CF_3O_2) were recorded in the wavelength range 220 nm to 240 nm. Upper limit *k* derived from simulations of the decay traces using a 15 reaction mechanism. Good fits could not be obtained if the $CF_3O_2 + HO_2$ was occurring appreciably under the experimental conditions.
- (b) Pulse radiolysis study of CHF₃-H₂-O₂-SF₆ mixtures at a total pressure of 1013 mbar. CF₃O₂ and HO₂ radicals were monitored by UV absorption spectroscopy at 230 nm. Decays in transient absorption signals (with contributions from HO₂ and CF₃O₂) were recorded at 230 nm. The cited value of k was derived from simulation of the decay in absorption, using a 13 reaction chemical mechanism.
- (c) Experiments performed at 2.7 mbar. CF_3O_2 and HO_2 radicals were produced by the F + CHF_3 and F + CH_3OH reactions, with subsequent addition of O_2 . Both CF_3O_2 and HO_2 were monitored by titration to NO_2 following reaction with excess NO, with detection of NO_2 by LIF. Upper limit *k* derived from simulations of the decay in radical concentration, using an explicit reaction mechanism. Actual values obtained varied in the range (< 1 to 3) x 10^{-12} cm³ molecule⁻¹ s⁻¹.

Preferred Values

No recommendation

Comments

Although the results of Sehested et al. (1997) and Biggs et al. (1997) provide evidence for the occurrence of the reaction of HO_2 with CF_3O_2 , the rate coefficient is not well-determined in any of the reported studies. No recommendation can be made until further kinetics and product studies of this reaction are available.

References

Biggs, P., Canosa-Mas, C.E., Shallcross, D.E., Vipond, A. and Wayne, R.P.: J. Chem. Soc.

Farad. Trans. 93, 2701, 1997.Hayman, G. and Battin-Leclerc, F.: J. Chem. Soc. Farad. Trans. 91, 1313, 1995.Sehested, J., Mogelberg, T., Fagerstrom, K., Mahmoud, G. and Wallington, T. J.: Int. J. Chem. Kinet. 29, 673, 1997.