IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet III.A4.84 iIOx5

Data sheets can be downloaded for personal use only and must not be re-transmitted or disseminated either electronically or in hard copy without explicit written permission. The citation for this data sheet is: IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, (http://iupac.pole-ether.fr).

This data sheet last evaluated: June 2007.

$I + NO + M \rightarrow INO + M$

 $\Delta H^{\circ} = -75.7 \text{ kJ} \cdot \text{mol}^{-1}$

Low-pressure rate coefficients Rate coefficient data

k ₀ /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients			
$(6.0 \pm 2.5) \times 10^{-33} (T/300)^{-1.0} [He]$	320-450	van den Bergh and Troe, 1976	PLP-UVA (a)
$(1.6 \pm 0.5) \times 10^{-32} [N_2]$	330	van den Bergh, Benoit-Guyot	andPLP-UVA (b)
		Troe, 1977	
$(9.5 \pm 3) \times 10^{-33} [Ar]$	330	,	
$(1.05 \pm 0.3) \times 10^{-32} [Ar]$	298		
$(1.03 \pm 0.06) \times 10^{-32} (T/300)^{-1.1} [Ar]$	298-328	Basco and Hunt, 1978	FP (c)

Comments

- (a) Photolysis of I₂ at 694 nm in the presence of NO and He. The pressure of He was varied between 1 and 200 bar. I₂ and INO spectra were observed.
- (b) As in comment (a). The rate coefficient for M = Ar at 298 K was calculated from the measured rate coefficient at 330 K and the temperature dependence reported by van den Bergh and Troe (1976).
- (c) Photolysis of I₂ in the presence of NO and Ar.

Preferred Values

 $k_0 = 1.8 \times 10^{-32} (T/300)^{-1.0} [N_2] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range } 290-450 \text{ K}.$

Reliability

 $\Delta \log k_0 = \pm 0.1$ at 298 K. $\Delta n = \pm 0.5$.

Comments on Preferred Values

The preferred values are based on the rate coefficients for M = Ar determined by van den Bergh et al. (1976) and Basco and Hunt (1978) which agree remarkably well.

High-pressure rate coefficients Rate coefficient data

k _{ss} /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients ≥1.7 x 10 ⁻¹¹	330	van den Bergh and Troe, 1976	PLP-UVA (a)

Comments

(a) As for comment (a) for k_0 . Based on a falloff extrapolation with $F_c = 0.6$.

Preferred Values

 $k_{\infty} = 1.7 \text{ x } 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range } 300 \text{ K to } 400 \text{ K}.$

Reliability

 $\Delta \log k_{\infty} = \pm 0.5$ over the temperature range 300 K to 400 K. $\Delta n = \pm 1$.

Comments on Preferred Values

The preferred values are based on the only measurement by van den Bergh and Troe (1976), extrapolated by using a value of $F_c = 0.6$.

The following text-line combines the preferred values for the high and low pressure limiting rate coefficients to generate a single, cut-and-paste expression for calculation of k:

 $= ((1.8e-32*(T/300)^{-1.0})*M*(1.7e-11))/((1.8e-32*(T/300)^{-1.0})*M+(1.7e-11))*10^{(\log 10(0.6)/(1+(\log 10((1.8e-32*(T/300)^{-1.0})*M/(1.7e-11)))})$

The molecular density, $M = 7.243 \times 10^{21} P(bar)/T(K)$

References

Basco, N. and Hunt, J. E.: Int. J. Chem. Kinet., 10, 733, 1978. van den Bergh, H. and Troe, J.: J. Chem. Phys., 64, 736, 1976. van den Bergh, H., Benoit-Guyot, N. and Troe, J.: Int. J. Chem. Kinet., 9, 223, 1977.