IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet P6

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hard copy without explicit written permission.

This data sheet updated: 16th January 2003.

$CH_3COCHO + hv \rightarrow products$

Primary photochemical transitions

Reaction	$\Delta H^{\circ}_{298}/kJ\cdot mol^{-1}$	$\lambda_{\text{threshold}}/nm$
$CH_{3}COCHO + h_{0} \rightarrow CH_{4} + 2CO $ $\rightarrow CH_{3}CO + HCO $ $\rightarrow CH_{3}CHO + CO $ (1) $\rightarrow CH_{3}CHO + CO $ (3)	-24.7 304.2 -5.2	393

Absorption cross-section data

Wavelength range/nm	Reference	Comments
220-480	Meller et al., 1991 ¹	(a)
205-480	Staffelbach et al., 1995 ²	(b)
290-440	Chen, Wang and Zhu, 2000 ³	(c)

Quantum yield data $(\phi = \phi_1 + \phi_2 + \phi_3)$

Measurement	Wavelength range/nm	Reference	Comments
φ(2)			
0.14	240 - 420	Staffelbach et al., 1995 ²	(d)
1.0	260 - 320	Koch and Moortgat, 1998 ⁴	(e)
1.10±0.14	380	-	
0.47 ± 0.09	400		
0.21±0.06	420		
0.08 ± 0.02	440		
0.82 ± 0.06	290	Chen, Wang and Zhu, 2000 ³	(f)
0.89 ± 0.10	300		
0.97±0.08	320		
0.92±0.10	380		
0.56±0.09	400		
0.27 ± 0.04	420		
0.17±0.02	440		

Comments

(a) Measured over the range 220 nm to 480 nm by conventional UV spectroscopy in a cell of path length 63 cm. Light was detected by a diode array camera and the spectral resolution was 0.07 nm. As well as using methylglyoxal prepared external to the cell, methylglyoxal was generated *in situ* by the Cl atom-initiated modulated photo-oxidation of hydroxyacetone and the cross-sections were measured over the range 390 nm to 460 nm in these *in situ* studies.

- (b) Cross-sections measured in a 90 cm cell using a diode array spectrometer. The spectral resolution was estimated to be 0.6 nm. Pressures in the range 0.13 mbar to 8.0 mbar were used and measurements were made at 248 K, 273 K and 298 K.
- (c) Cross-sections determined from transmission of UV light at 5 nm intervals from tunable dye laser, as a function of CH₃COCHO pressure. Overall uncertainty estimated to be ~10% at all wavelengths, except at 280 and 330 nm, where uncertainties are 20-30% higher.
- (d) Low concentrations of methyl glyoxal in an O₂ (20%)/N₂ (80%) mixture at 1 bar were photolysed with an Xe arc equipped with filters to isolate specific wavelength regions. Products (HCHO, CH₃COOH, CH₃COO₂H, CH₃OH, HCOOH, CO, CO₂) were monitored by FTIR. Light intensity calibrated by photolysis of Cl₂/CH₃OH/O₂/N₂ mixture. Quantum yields were derived by modeling product yields taking into account a number of important secondary reactions. Average φ value quoted.
- (e) Static photolysis of CH₃COCHO in synthetic air. Quantum yields of molecular products CO and HCHO determined by GC. Pressure range 30-900 Torr (0.039-1.2 bar). For the short wavelength band φ was independent of pressure and wavelength; in the long wavelength band φ(CO) showed Stern-Volmer pressure quenching and φ (HCHO) *increased* with methyl glyoxal pressure; zero pressure values of CH₃COCHO are quoted here. The primary process was attributed to reaction (2) at all wavelengths
- (f) Tunable dye laser photolysis of CH₃COCHO with time resolved measurement of HCO concentration by cavity ring down spectroscopy at 613.8 nm. Absorbed flux was determined from photon fluence measurements using a calibrated Joulemeter. Absolute yields of HCO calculated from absorption cross sections, $\sigma(HCO)$, determined by *in situ* calibration using either photo-dissociation of HCHO (at 290–310 nm) or Cl₂+HCHO mixtures (at 310-440 nm) to produce known amounts of HCO. A weak dependence of $\phi(HCO)$ on $P_{CH3COCHO}$ was observed and the values of ϕ quoted at selected wavelengths are for zero pressure, derived from Stern-Volmer plots. No dependence of $\phi(HCO)$ on N_2 pressure up to 520 mbar was observed in the 270-390 nm region. Pressure quenching by N_2 was observed in the long wavelength band (380-440 nm) and expressions were reported for the wavelength-dependent zero pressure quantum yield ($\phi(HCO)_0 = (3.63 \pm 0.32) \times 10^{-7} [\exp(5693 \pm 533)/\lambda(nm)]$ and Stern-Volmer quenching constant by N_2 (k_Q (Torr-1)= (1.93 ± 0.24) x 10⁴ [exp(-(5639 ± 497)/ $\lambda(nm)$]). Values of $\phi(2)$ for 1 bar air were obtained by extrapolation, and atmospheric photolysis rates were calculated.

Preferred Values

Absorption cross-sections at 298 K at 5 nm intervals between 225 nm and 410 nm

λ/nm	$10^{20} \sigma/cm^2$	λ/nm	$10^{20} \sigma/cm^2$
225	1.268	320	1.511
230	1.477	325	0.938
235	1.803	330	0.652
240	2.071	335	0.482
245	2.304	340	0.323
250	2.612	345	0.300
255	2.859	350	0.394
260	3.280	355	0.560
265	3.618	360	0.695
270	4.159	365	1.077
275	4.413	370	1.475
280	4.877	375	1.911
285	4.719	380	2.429
290	4.838	385	3.221
295	4.362	390	4.029

300	3.754	395	4.732
305	3.361	400	5.664
310	2.365	405	6.923
315	1.891	410	8.459

Preferred Values

Absorption cross-sections at 298 K at 1 nm intervals between 401 nm and 475 nm

λ/nm	$10^{20} \sigma/cm^2$	λ/nm	$10^{20} \sigma/\text{cm}^2$
401	5.90	439	11.01
402	6.07	440	9.94
403	6.35	441	10.39
404	6.54	442	10.20
405	6.91	443	10.17
406	7.20	444	11.17
407	7.58	445	9.61
408	7.94	446	8.90
409	8.12	447	9.84
410	8.52	448	9.18
411	8.63	449	10.13
412	9.07	450	8.67
413	9.37	451	6.34
414	9.62	452	6.33
415	9.68	453	6.08
416	9.71	454	4.46
417	10.04	455	3.69
418	10.07	456	3.08
419	10.12	457	2.46
420	10.21	458	1.81
421	10.34	459	1.28
422	10.51	460	0.914
423	10.45	461	0.795
424	10.15	462	0.642
425	10.34	463	0.479
426	10.24	464	0.332
427	9.84	465	0.268
428	10.01	466	0.227
429	9.94	467	0.187
430	10.41	468	0.160
431	10.53	469	0.133
432	9.79	470	0.108
433	10.64	471	0.099
434	10.54	472	0.089
435	10.81	473	0.077
436	11.13	474	0.067
437	9.99	475	0.062
438	10.59		

Quantum yields for zero pressure at 298 K

 $\phi(2)_0 = (3.63 \pm 0.32) \times 10^{-7} [\exp(5693 \pm 533)/\lambda(nm)] \text{ for } 380 < \lambda < 440 \text{ nm}$

 $\phi(2)_0 = 1.0 \text{ for } 280 < \lambda < 380 \text{ nm}$

Comments on Preferred Values

The preferred values of the absorption cross-sections are taken from the work of Meller *et al.*¹ The cross-sections of Staffelbach *et al.*² and Chen *et al.*³ agree to within <10% of those of Meller *et al.*¹ across the whole range of the three studies. Staffelbach *et al.*² also studied the cross-sections at three different temperatures: 248 K, 273 K, and 298 K. They found little variation in the cross-sections ($\leq 10\%$) over this temperature range.

The recent studies of Koch and Moortgat⁴ and Chen *et al.*³ provide for the first time information on the wavelength-resolved quantum yields for methyl glyoxal photolysis, and the latter study gives direct measurements of the initial product of photodissociation by reaction (2), HCO. This demonstrates conclusively that reaction (2) is the predominant dissociation channel over the wavelength range 280 - 440 nm. These results supercede the earlier work of Staffelbach *et al.*,² Raber and Moortgat⁵ and Plum *et al.*,⁶ which used broad-band excitation.

The results of Koch and Moortgat⁴ and Chen *et al.*³ are in good agreement regarding both the zero pressure quantum yields, and the absence of a dependence on pressure of $\phi(2)$ at $\lambda < 380$ nm. At the longer wavelengths (380 < λ < 440 nm) both studies observed a fall off in $\phi(2)$ with wavelength, and a complex pressure dependence. Koch and Moortgat⁴ interpret their HCHO yields using a mechanism with a reaction of excited methyl glyoxal with the ground state. The quenching by N₂ observed by Chen *et al.*⁵ in the long wavelength band (380-440 nm) did not exhibit Stern-Volmer behaviour, indicating the involvement of more than one excited precursor for HCO. There is a difference of up to a factor of 4 in the extrapolated values for the quantum yields in the range $\lambda = 380$ -400 nm at atmospheric pressure, reported from the two studies.

The preferred values are taken from Chen *et al.*³, since they were determined directly. The expression for the wavelength dependence of $\phi(2)_0$ (zero pressure) at $\lambda > 380$ nm is taken from their work. Values at higher pressures (of air) can be calculated using the expression for the wavelength dependence of the quenching constant obtained by approximating to the Stern Volmer relationship:

$$1/\phi(2) = 1/\phi(2)_0 + k_Q P[N_2(Torr)]$$

 k_Q (Torr⁻¹) = (1.93 ± 0.24) x 10^4 [exp(-(5639 ± 497)/ λ (nm)]. In view of the departure from linearity this leads to an estimated uncertainty up to ±50% in the overall quantum yield at 1 bar.

References

- R. Meller, W. Raber, J. N. Crowley, M. E. Jenkin, and G. K. Moortgat, J. Photochem. Photobiol., A: Chemistry **62**, 163 (1991).
- ² T. A. Staffelbach, J. J. Orlando, G. S. Tyndall, and J. G. Calvert, J. Geophys. Res. **100**, 14189 (1995).
- ³ Y. Chen, W. Wang and L. Zhu, J. Phys. Chem. A, **104** 11126 (2000).
- ⁴ S. Koch and G. K. Moortgat, J. Phys. Chem. A, **102** 9142 (1998).
- W. H. Raber and G. K. Moortgat, "Photooxidation of Selected Carbonyl Compounds in Air: Methyl Ethyl Ketone, Methyl Vinyl Ketone, Methacrolein and Methylglyoxal," Chap. 9, In: "Progress and Problems in Atmospheric Chemistry," ed. J. Barker, World Scientific Publishing, Singapore (1997).
- ⁶ C. N. Plum, E. Sanhueza, R. Atkinson, W. P. L. Carter, and J. N. Pitts, Jr., Environ. Sci. Technol. 17, 479 (1983).