IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet AROM RAD8 Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. This data sheet last evaluated: January 2009; last change in preferred values: January 2009. ## $HO_2 + C_6H_5CH_2O_2 \rightarrow C_6H_5CH_2OOH + O_2$ #### Rate coefficient data | k/cm³ molecule-1 s-1 | Temp./K | Reference | Technique/ Comments | |---|----------------|----------------------|---------------------| | Absolute Rate Coefficients
$(1.09 \pm 0.32) \times 10^{-11}$
$3.75 \times 10^{-13} \exp[(980 \pm 230)/T]$ | 300
273-450 | Nozière et al., 1994 | FP-AS (a) | | $(1.25 \pm 0.20) \times 10^{-11}$
$5.7 \times 10^{-14} \exp[1649/T]$ | 298
298-353 | El Dib et al., 2006 | PLP-AS (b) | #### **Comments** - (a) Photolysis of Cl₂-toluene-CH₃OH-O₂-N₂ mixtures. Progress of the reaction was followed by time-resolved UV absorption measurements at 250 nm. Values of *k* were derived by simulation of, and optimisation to, the absorption profiles using a mechanism which took account of the formation of absorbing products, and removal of C₆H₅CH₂O₂ via its self-reaction, which was characterised in the same study. A UVP-FTIR smog chamber product study of the same chemical system was also carried out, with C₆H₅CH₂OOH formation inferred from observation of a typical hydroperoxide band in the 3575–3625 cm⁻¹ region. Measurements were hampered by aerosol formation, and yield determination was not possible. - (b) Photolysis of Cl₂-toluene-CH₃OH-O₂-N₂ mixtures. Progress of the reaction was followed by time-resolved UV absorption measurements at 250 nm (where C₆H₅CH₂O₂ absorbs strongly) and 225 nm (where HO₂ absorption makes a contribution). Values of *k* were derived by simulation of, and optimisation to, the absorption profiles using a mechanism which took account of the formation of absorbing products, and removal of C₆H₅CH₂O₂ via its self-reaction, which was characterised in the same study. ### **Preferred Values** | Parameter | Value | T/K | | |-----------------|---|---------|--| | k | 1.2 x 10 ⁻¹¹ cm ³ molecule ⁻¹ s ⁻¹ | 298 | | | k | $1.5 \times 10^{-13} \exp (1310/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ | 270-450 | | | Reliability | | | | | $\Delta \log k$ | ± 0.3 | 298 | | | $\Delta E/R$ | $\pm 500 \text{ K}$ | | | | | | | | ## Comments on Preferred Values The two kinetics studies of this reaction report values of k which are in reasonable agreement over the common temperature range, despite differences in the UV spectra of $C_6H_5CH_2O_2$ and C_6H_5CHO , and in the kinetics of the competing self-reaction used in the analyses. The preferred rate coefficient at 298 K is taken to be the mean of the reported values at 300 K in the study of Nozière et al. (1994) and at 298 K in the study of El Dib et al. (2006). The recommended temperature coefficient is also based on the mean of the values reported in the two studies, with the pre-exponential factor adjusted to give the recommended value of k at 298 K. Further kinetics studies are required to reduce the uncertainties. The FTIR product study of Nozière et al. (1994) provides evidence for the formation of the hydroperoxide product, C₆H₅CH₂OOH, at room temperature, although it was not possible to quantify its yield. Further quantitative product studies are required. #### References El Dib, G., Chakir, A., Roth, E., Brion, J. and Daumont, D.: J. Phys. Chem. A, 110, 7848, 2006. Nozière, B., Lesclaux, R., Hurley, M. D., Dearth, M. A. and Wallington, T. J.: J. Phys. Chem., 98, 2864, 1994.