IUPAC Subcommittee on Gas Kinetic Data Evaluation

Providing evaluated kinetic data on the web since 1999.

IUPAC Subcommittee on Gas Kinetic Data Evaluation

Website: http://www.iupac-kinetic.ch.cam.ac.uk/ See website for latest evaluated data. Datasheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

This datasheet last evaluated: 2003-07-07 ; last change in preferred values: 2003-07-07 ; last peer-reviewed publication: 2004-03-09


HO + SO2 + MHOSO2 + M(1) Δ Hο = -125 kJ mol-1

Rate Coefficient Data: Low-pressure rate coefficients

Absolute Rate Coefficients

Rate Coefficient (k0) / Temperature / ReferenceTechniques and Comments
cm3molecule-1s-1Kelvin
(7.2 ± 2.6)×10 -31 [N 2 ]300Harris and Wayne, 1975DF-RF
7.0×10 -31 (T/300) -2.9 [N 2 ](a)Erler et al., 1975DF-RF
4.9×10 -31 [N 2 ]300Davis, 1976(b)
(1.6 ± 0.3)×10 -31 [Ar]298Atkinson et al., 1976FP-RF (c)
3.6×10 -31 [N 2 ]300Erler and Zellner, 1978FP-RA
(2.54 ± 0.33)×10 -31 [N 2 ]298Leu, 1982DF-RF (d)
(7.91 ± 0.24)×10 -32 261–414
    ×(T/298) -(2.85±0.21) [He]
1.6×10 -31 [N 2 ]297Paraskevopoulos et al., 1983FP-RA (e)
5.8×10 -31 (T/300) -2.6 [N 2 ]260–420Wine et al., 1984FP-RF (f)
(2.4 ± 0.7)×10 -31 [N 2 ]298Lee et al., 1990DF-RF
(1.1 ± 0.3)×10 -32 exp(640/T) [He]280–413

Comments

(a) Temperature range not cited.

(b) Measurements cited in Hampson and Garvin (1978) in the pressure range 6.7–670 mbar (5–500 Torr), extrapolated to k 0 and k .

(c) Pressure range 33–870 mbar (25–650 Torr).

(d) Measurements at pressures near 1.3 mbar (1 Torr).

(e) Pressure range 73–1013 mbar (55–760 Torr). Falloff extrapolation using Lindemann-Hinshelwood (i.e. neglecting broadening factors), and hence responsible for low value.

(f) Temperature range 260–420 K, pressure range 17–928 mbar (13–696 Torr), bath gases He, Ar, N 2 and SF 6 . Expression derived from fall-off parameterisation using F c = exp(-T/388).

Preferred Values

k0cm3molecule-1s-1{4.5-31 N_2[N2] 4.5×10-31 ±0.3 N_2[N2]   if   T 298 4.5-31 T 300 PlusMinus -3.9 1 N_2[N2]4.5×10-31 (T/ 300 )( -3.9 ±1) N_2[N2]  if   200 T 300

Comments on Preferred Values

The preferred value is that given by Wine et al. (1984) based on a falloff analysis using F c = 0.525. In combination with k , (see below) this expression accurately reproduces the data of Wine et al. (1984), Paraskevopoulos et al. (1983), Lee et al. (1990) and Leu (1982) in N 2 at room temperature and covers the atmospheric pressure range without any extrapolation. The temperature dependence of k 0 was based on an analysis of data obtained in Ar, He and F 6 .

Rate Coefficient Data: High-pressure rate coefficients

Absolute Rate Coefficients

Rate Coefficient (k) / Temperature / ReferenceTechniques and Comments
cm3molecule-1s-1Kelvin
1.8×10 -12 435Gordon and, 1975(a)
9.0×10 -13 300Davis, 1976(b)
8.3×10 -13 300Atkinson et al., 1976FP-RF (c)
1.2×10 -12 297Paraskevopoulos et al., 1983FP-RA (d)
1.26×10 -12 (T/300) -0.7 260–420Wine et al., 1984FP-RF (e)
1.2×10 -11 exp(-360/T)220–400Fulle et al., 1999LP-LIF (f)

Comments

(a) Pulse radiolysis in H 2 O vapor at 1 bar.

(b) See comment (b) for k 0 .

(c) See comment (c) for k 0 .

(d) See comment (e) for k 0 .

(e) See comment (f) for k 0 .

(f) Pressure range 1–96 bar (He).

Preferred Values

kcm3molecule-1s-1{1.3-121.3×10-12±0.3  if   T 298 1.3-12 T 300 -0.7 1.3×10-12 (T/ 300 ) -0.7   if   200 T 300

Comments on Preferred Values

See Comments on preferred values for k 0 . Falloff representation with F c = 0.525 near 250 K. The data obtained by Fulle et al. (1999) at pressures up to 96 bar (He) indicate a larger value for the rate coefficient at the high pressure limit (factors of 1.5 and 2.8 at 220 and 300 K, respectively), and also a barrier of 3 kJ/mol for the recombination process. These large values for the high pressure limit appear to be in disaccord with measured values for the rate constant for deactivation of HO (v=1) by SO 2 which are more in line with the recommended values above (Blitz et al., 2000). Further experimental and theoretical input would be useful in resolving this discrepancy.

References

  • Atkinson, R., Perry, R. A. and Pitts Jr., J. N. , J. Chem. Phys. , 65 , 306 , 1976.
  • Blitz, M. A., McKee, W. and Pilling, M. J. , The Combustion Institute , 28 , p 2491 , 2000.
  • Davis, D. D., 1976 , Nat. Bur. Stand. (U.S.) , Spec. Publ. 513 , 1978.).
  • Erler, K., Field, D. and Zellner, R., 1975 , Ber. Bunsenges. Phys. Chem. , 82 , 1172 , 1978).
  • Erler, K. and Zellner, R., 1978 , Ber. Bunsenges. Phys. Chem. , 82 , 1172 , 1978).
  • Fulle, D., Hamann, H. F. and Hippler, H. , Phys. Chem. Chem. Phys. , 1 , 2695 , 1999.
  • Gordon, S. and Mulac, W. A. , Int. J. Chem. Kinet. , 1 , 289 , 1975.
  • Hampson, R. F. and Garvin, D. , Nat. Bur. Stand. (U.S.) , Spec. Publ. 513 , 1978.
  • Harris, G. W. and Wayne, R. P. , J. Chem. Soc. Faraday Trans. 1 , 71 , 610 , 1975.
  • Lee, Y.-Y., Cao, W.-C. and Lee, Y.-P. , J. Phys. Chem. , 94 , 4535 , 1990.
  • Leu, M. T. , J. Phys. Chem. , 86 , 4558 , 1982.
  • Paraskevopoulos, G., Singleton, D. L. and Irwin, R. S. , Chem. Phys. Lett. , 100 , 83 , 1983.
  • Wine, P. H., Semmes, D. H., Thompson, R. J., Gump, C. A., Ravishankara, A. R., Torabi, A. and Nicovich, J. M. , J. Phys. Chem. , 88 , 2095 , 1984.