IUPAC Subcommittee on Gas Kinetic Data Evaluation

Providing evaluated kinetic data on the web since 1999.

IUPAC Subcommittee on Gas Kinetic Data Evaluation

Website: http://www.iupac-kinetic.ch.cam.ac.uk/ See website for latest evaluated data. Datasheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

This datasheet last evaluated: 2003-01-16 ; last change in preferred values: 2003-01-16 ; last peer-reviewed publication: 2004-03-09


HO + NO2 + MHONO2 + M(1) Δ Hο = -207.6 kJ mol-1

Rate Coefficient Data: Low-pressure rate coefficients

Absolute Rate Coefficients

Rate Coefficient (k0) / Temperature / ReferenceTechniques and Comments
cm3molecule-1s-1Kelvin
2.3×10 -30 (T/295) -2.5 [N 2 ]240–450Anderson et al., 1974DF-RF (a)
2.9×10 -30 [N 2 ]296Howard and Evenson, 1974DF-LMR (b)
2.6×10 -30 (T/296) -2.6 [N 2 ]220–550Anastasi and Smith, 1976FP-RA (c)
(2.6 ± 0.4)×10 -30 (T/300) -2.8 [N 2 ]247–352Wine et al., 1979RP-RF (d)
(2.7 ± 0.2)×10 -30 [N 2 ]295Burrows et al., 1983DF-RF (e)
(3.39 ± 0.26)×10 -30 [N 2 ]300Donahue et al., 1997DF-LIF (f)
2.47×10 -30 (T/300) -2.97 [N 2 ]220–250Brown et al., 1999PLP-LIF (g)
2.85×10 -30 (T/300) -2.67 [N 2 ]220–300Dransfield et al., 1999DF-LIF (h)
(2.5±0.3)×10 -30 [N 2 ]298D'Ottone et al., 2001PLP-LIF(i)

Comments

(a) Measurements over the range 1.3–13 mbar (1–10 Torr). Evaluation assuming limiting third order behavior.

(b) Measurements over the range 0.5–6.7 mbar (0.4–5 Torr). Evaluation assuming limiting third order behavior.

(c) Measurements using bath gas concentrations of (3.2–160)×10 17 molecule cm -3 . Falloff extrapolation using Kassel integrals towards k 0 in agreement with data from Anderson et al. (1974) and Howard and Evenson (1974). Extrapolation towards k oversimplified, but data in the intermediate falloff range in agreement with later work.

(d) Measurements using bath gas concentrations of (5.4–230)×10 17 molecule cm -3 . Extrapolation of the falloff data with F c = 0.7 leads to the given k 0 .

(e) Measurements using bath gas concentrations of 1.3–6.7 mbar (1–5 Torr). Evaluation assuming limiting third order behavior.

(f) Measurements over the range 2.6–780 mbar (2–600 Torr). Evaluation of the falloff curve with F c = 0.3 ± 0.03 and k = (4.77 ± 1.04)×10 -11 cm 3 molecules -1 s -1 . Fit based on data from this work and Anderson et al. (1974), Howard and Evenson (1974), Anastasi and Smith (1976), Wine et al. (1979) and Burrows et al. (1983).

(g) Measurements over the range 26–325 mbar (20–250 Torr). Evaluation of the falloff curve with F c = 0.6 and k = 1.45×10 -11 (T/300) -2.77 cm 3 molecule -1 s -1 .

(h) Measurements over the range 6.6–197 mbar (50–150 Torr). Evaluation of the falloff curve with F c = exp(-T/363) and k = 3.13×10 -11 cm 3 molecule -1 s -1 . Fit based on data from this work and Anderson et al. (1974), Howard and Evenson (1974), Anastasi and Smith (1976), Wine et al. (1979), Burrows et al. (1983), Donahue et al. (1997) and Brown et al. (1999).

(i) Measurements over the range 40–920 mbar (30–700 Torr) at 273 and 298 K. Data evaluated with F c = 0.6 and k = (2.4 ± 1.7)×10 -11 cm 3 molecule -1 s -1 . The use of F c = 0.4 would lead to k 0 = 3.7×10 -30 (T/300) -3.0 [N 2 ] cm 3 molecule -1 s -1 and k = 4.6×10 -11 cm 3 molecule -1 s -1 .

Preferred Values

k0cm3molecule-1s-1{3.4-30 N_2[N2] 3.4×10-30±0.1 N_2[N2]   if   T 298 3.3-30 T 300 PlusMinus -3.0 0.5 N_2[N2]3.3×10-30 (T/ 300 )( -3.0 ±0.5) N_2[N2]  if   200 T 300

Comments on Preferred Values

The differences between the various values of k 0 in part are due to different experimental results, in part they arise from different falloff expressions using either F c = 0.6 or smaller values of F c . While the differences in the experimental results are small near to the low pressure limit, they become increasingly pronounced towards the center of the falloff curve and the extrapolated k . There are essentially two groups of studies, those with higher rate constants (e.g. Anastasi and Smith, 1976; Wine et al., 1979; Brown et al., 1999; D'Ottone et al., 2001) and those with lower values (e.g. Donahue et al., 1997; Dransfield et al., 1999). As long as the reasons for the differences are not identified, we prefer an average of the results from Donahue et al. (1997), Brown et al. (1999), Dransfield et al. (1999) and D'Ottone et al. (2001). The falloff extrapolation is done with the theoretical results for F c = 0.4 and the temperature coefficient of k 0 from Troe (2001).

Rate Coefficient Data: High-pressure rate coefficients

Absolute Rate Coefficients

Rate Coefficient (k) / Temperature / ReferenceTechniques and Comments
cm3molecule-1s-1Kelvin
3.5×10 -11 297Wine et al., 1979FP-RF (a)
3.0×10 -11 295Robertshaw and Smith, 1982PLP-LIF (b)
7.5×10 -11 298Forster et al., 1995PLP-LIF (c)
(4.77 ± 1.04)×10 -11 300Donahue et al., 1997DF-LIF (d)
(7.5 ± 2.2)×10 -11 250–400Fulle et al., 1998PLP-LIF (e)
1.45×10 -11 (T/300)220–250Brown et al., 1999PLP-LIF (f)
3.13×10 -11 220–300Dransfield et al., 1999DF-LIF (g)
(2.4 ± 1.7)×10 -11 298D'Ottone et al., 2001(h)
(5.0 ± 2)×10 -11 250–400Hippler et al., 2002PLP-LIF (i)
(4.8 ± 0.8)×10 -11 298Smith and Williams, 1985(j)

Comments

(a) See comment (d) for k 0 . Extrapolation of the falloff curve with F c = 0.7 leads to the given lower limit of k .

(b) Measurements in the bath gases Ar up to 4 bar and CF 4 up to 8.6 bar.

(c) Measurements in a static high pressure cell in the bath gas He over the range 7.6×10 18 – 3.6×10 21 molecule cm -3 (1–150 bar).

(d) See comment (f) for k 0 .

(e) See comment (c). Measurements in He at 250 K between 1.04 and 140 bar, at 300 K between 113 and 1330 bar, and at 400 K between 1.6 and 1370 bar. High pressure flow cell used below 8 bar, static cell used above 200 bar. Falloff extrapolations with k 0 = 1.6×10 -30 (T/300) -2.9 [He] cm 3 molecule -1 s -1 and F c = 0.45 (268 K), 0.41 (300 K) and 0.33 (400 K).

(f) See comment (g) for k 0 .

(g) See comment (h) for k 0 .

(h) See comment (i) for k 0 .

(i) See comment (c) and (e); repeated measurements in high pressure flow cells revealed that those measurements from Forster et al. (1995) and Fulle et al. (1998), which were done in a static high pressure cell (pressures above 200 bar), gave k values which are about 30 % too high. Nonexponential profiles of HO decay above 400 K at pressures around 100 bar suggest that HOONO isomers are formed besides HNO 3 which become thermally unstable on a μs-time scale under these conditions.

(j) Pulsed laser photolysis – LIF study of the vibrational relaxation HO (ν = 1) + NO 2 HO (ν = 0) + NO 2 .

Preferred Values

kcm3molecule-1s-1{4.1-114.1×10-11±0.3  if   T 298 T30004.1×10-11(T/300)0exp  if   200 T 400 kk_intermediateP:there is an error in the rate coefficient name!cm3molecule-1s-11.2-111.2×10-11±0.3  if   T 298   and   P 1 bar

Comments on Preferred Values

See comments on preferred values of k 0 . The preferred value of k is the average of the falloff extrapolations from Donahue et al. (1997), Dransfield et al. (1999) and D'Ottone et al. (2001), using the theoretical value of F c = 0.4 from Troe (2001), the revised high-pressure value from Hippler et al. (2002) and the vibrational relaxation rate constant from Smith and Williams (1985). The preferred value of k(1bar) corresponds to the present preferred values of k 0 and k and F c = 0.4. It agrees with the results from D'Ottone et al. (2001). The measurements from Donahue et al. (1997) give a k(1 bar) which is about a factor of 2 smaller. We discard this value because it is difficult to be reconciled with the results from Hippler et al. (2002) and Smith and Williams (1985), unless complications with isomer formation show up (see the following).

There is only limited information on the extent of formation of HOONO isomers, e.g. discussed in the modeling in Golden and Smith (2000), Chakraborty et al. (1998) and Matheu and Green (2000), and on their fate. While spectroscopic in situ detection still has not been possible (Dransfield et al., 2001), non-exponential HO-decays above 400 K at pressures near 100 bar in Hippler et al. (2002) provided clear evidence for its formation. It remains unclear whether HOONO efficiently converts to HONO 2 at lower pressures by intramolecular processes, or whether HOONO is a final reaction product. Some information on a high barrier for the isomerization on HOONO HONO 2 is provided by ab initio calculations in Sumathi and Peyerimhoff (1997), however, isomerization in loosely bound structures cannot yet be ruled out. Isotopic scrambling experiments from Donahue et al. (2001) provide some insight, suggesting that HONO 2 formation contributes only 20% to k . However, the theoretical analysis from Troe (2001) seems to rule out a noticeable contribution of HOONO formation under atmospheric conditions.

References

  • Anastasi, C. and Smith, I. W. M. , J. Chem. Soc. Faraday Trans. 2 , 72 , 1459 , 1976.
  • Anderson, J. G., Margitan, J. J. and Kaufman, F. , J. Chem. Phys. , 60 , 3310 , 1974.
  • Anderson, J. G. , J. Geophys. Res. , 102 , 6159 , 1997.
  • Brown, S. S., Talukdar, R. K. and Ravishankara, A. R. , Chem. Phys. Lett. , 299 , 277 , 1999.
  • Burrows, J. P., Wallington, T. J. and Wayne, R. P. , J. Chem. Soc. Faraday Trans. 2 , 79 , 111 , 1983.
  • Chakraborty, D., Park, J. and Lin, M. C. , Chem. Phys. , 231 , 39 , 1998.
  • D'Ottone, L., Campazano-Jost, P., Bauer, D. and Hynes, A. J. , J. Phys. Chem. A , 105 , 10 538 , 2001.
  • Donahue, N. M., Dubey, M. K., Mohrschladt, R., Demerjian, K., Dransfield, T. J., Perkins, K. K., Anderson, J. G., Sprenguether, M. M. and Demerjian, K. L. , Geophys. Res. Lett. , 26 , 687 , 1999.
  • Donahue, N. M., Mohrschladt, R., Dransfield, T. J., Anderson, J. G. and Dubey, M. K. , J. Phys. Chem. A , 105 , 1515 , 2001.
  • Dransfield, T. J., Donahue, N. M. and Anderson, J. G. , J. Phys. Chem. A , 105 , 1507 , 2001.
  • Forster, R., Frost, M., Fulle, D., Hamann, H. F., Hippler, H. and Troe, J. , J. Chem. Phys. , 100 , 5391 , 1998.
  • Golden, D. M. and Smith, G. P. , J. Phys. Chem. A , 104 , 3991 , 2000.
  • Hippler, H., Nasterlack, S. and Striebel, F. , Phys. Chem. Chem. Phys. , 4 , 2959 , 2002.
  • Howard, C. J. and Evenson, K. M. , J. Chem. Phys. , 61 , 1943 , 1974.
  • Matheu, D. M. and Green, W. H. , Int. J. Chem. Kinet. , 32 , 245 , 2000.
  • Robertshaw, J. S. and Smith, I. W. M. , J. Phys. Chem. , 86 , 785 , 1982.
  • Schlepegrell, A. and Troe, J. , J. Chem. Phys. , 103 , 2949 , 1995.
  • Smith, I. W. M. and Williams, M. D. , J. Chem. Soc. Faraday Trans. 2 , 81 , 1849 , 1985.
  • Sumathi, R. and Peyerimhoff, S. D. , J. Chem. Phys. , 107 , 1872 , 1997.
  • Troe, J. , Int. J. Chem. Kinet. 33 , 878 , 2001.
  • Wine, P. H., Kreutter, N. M. and Ravishankara, A. R. , J. Phys. Chem. , 83 , 3191 , 1979.