IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet oFOx67 Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. This data sheet updated: 24th January 2006. $$CF_3O_2 + CF_3O_2 \rightarrow CF_3O + CF_3O + O_2$$ $\Delta H^{\circ} = -83.2 \text{ kJ mol}^{-1}$ ## Rate coefficient data | k/cm³ molecule-1 s-1 | Temp./K | Reference | Technique/ Comments | |----------------------------------|---------|--------------------------|---------------------| | Absolute Rate Coefficients | | | | | $(1.8 \pm 0.5) \times 10^{-12}$ | 295 | Nielsen et al., 1992 | PR-UVA (a) | | 1.8×10^{-12} | 298 | Maricq and Szente, 1992a | FP-UVA (b) | | $(1.8 \pm 0.5) \times 10^{-12}$ | 297 | Maricq and Szente, 1992b | FP-UVA (c) | | $(1.2 \pm 0.3) \times 10^{-12}$ | 298 | Biggs et al., 1997 | DF-LIF/MS (d) | | $(2.25 \pm 0.3) \times 10^{-12}$ | 295 | Sehested et al., 1997 | PR-UVA (e) | #### **Comments** - (a) Pulse radiolysis study of CHF₃-O₂-SF₆ mixtures at a total pressure of 1000 mbar. CF₃O₂ radicals were monitored by UV absorption with $\sigma_{230 \text{ nm}} = (2.06 \pm 0.40) \text{ x } 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$, and an observed rate coefficient, $k_{\text{obs}} = (3.6 \pm 0.9) \text{ x } 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, was derived from the decay in absorption. Associated FTIR product studies using the photolysis of F₂-CHF₃-O₂-N₂ mixtures demonstrated quantitative formation of CF₃OOOCF₃, which was explained by the secondary reaction of CF₃O with CF₃O₂. The cited value of k is thus $0.5k_{\text{obs}}$, to take account of this secondary loss of CF₃O₂. - (b) Flash photolysis of CHF₃-F₂-O₂ mixtures with time-resolved absorption spectroscopy for the detection of CF₃O₂ radicals, with $\sigma_{210 \text{ nm}} = (4.3 \pm 0.3) \times 10^{-18} \text{ cm}^{-2}$ molecule⁻¹. A value of $k_{\text{obs}} = (3.1 \pm 0.25) \times 10^{-12} \text{ cm}^3$ molecule⁻¹ s⁻¹ was determined from the time-dependence of the CF₃O₂ radical absorbance. The cited value of k was obtained from a simulation in which secondary removal of CF₃O₂ was explicitly represented. - (c) Flash photolysis of F_2 in the presence of N_2 , O_2 , He, and CF_3CFH_2 . Secondary generation of CF_3O_2 in the system occurred by the reaction $CF_3CHFO \rightarrow CF_3 + HCOF$, followed by $CF_3 + O_2 + M \rightarrow CF_3O_2 + M$. CF_3O_2 radicals were monitored by UV absorption, and the 298 K value of $k_{obs} = 3.1 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹, derived in the authors' previous study (Maricq and Szente, 1992a), was shown to provide a good description of the time dependence of the formation and removal of CF_3O_2 . The previous value (Maricq and Szente, 1992a) of the rate coefficient for the elementary reaction, k, was therefore confirmed and assigned the cited error limits. Additional measurements suggested that k_{obs} decreases with increasing temperature. - (d) Experiments performed at pressures in the range 1.3 to 4 mbar. CF_3O_2 radicals were produced by the F + CHF₃ reaction or the F + CF₃I reaction, with subsequent addition of O_2 . CF_3O_2 radicals were monitored by titration to NO_2 following reaction with excess NO, with detection of NO_2 by either LIF or MS. An observed rate coefficient, $k_{obs} = (2.0 \pm 1.0) \times 10^{-12} \text{ cm}^3$ molecule⁻¹ s⁻¹, was derived from the decay in CF_3O_2 . The cited value of k was obtained from a simulation in which secondary removal of CF_3O_2 was explicitly considered. - (e) Pulse radiolysis study of CHF₃-O₂-SF₆ mixtures at a total pressure of 1000 mbar. CF₃O₂ radicals were monitored by UV absorption with $\sigma_{230 \text{ nm}} = 3.43 \times 10^{-18} \text{ cm}^2$ molecule⁻¹. The cited value of k was derived from simulation of the decay in absorption, using a chemical mechanism in which secondary removal of CF₃O₂ was explicitly represented. #### **Preferred Values** $k = 1.5 \text{ x } 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ Reliability $\Delta \log k = \pm 0.3 \text{ at } 298 \text{ K}.$ ### Comments on Preferred Values The reported quantitative formation of CF₃OOOCF₃ from CHF₃ oxidation, in the product study of Nielsen et al. (1992) is consistent with the self-reaction of CF₃O₂ proceeding via formation of CF₃O radicals, which react exclusively with CF₃O₂. The five reported values of k are in reasonable accord, covering a range of approximately two. The discharge-flow determination of Biggs et al. (1997) lies at the low end of the range, and this may be indicative a pressure dependence of the reaction. Biggs et al. (1997) performed QRRK calculations, based on the reaction proceeding via a [CF₃O₄CF₃]* intermediate and estimated that the high pressure limiting k (achieved at ca. 35-70 mbar) is ca. 15% greater than their measured value, i.e. $(1.4 \pm 0.4) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹. The observed range in reported k values may also be reduced by re-evaluating the results of the UV absorption studies (Nielsen et al., 1992; Maricq and Szente, 1992a,b; Sehested et al., 1997) using the recommended CF₃O₂ absorption cross sections reported by Nielsen and Wallington (1997), which are somewhat lower than those applied by Maricq and Szente (1992a,b) and Sehested et al. (1997). This leads to respective revised values of k of 1.5 x 10^{-12} and 1.4 x 10^{-12} cm³ molecule⁻¹ s⁻¹ in those studies, and a much improved general agreement among the reported studies. The preferred value of k is therefore based on the re-evaluations of the UV absorption studies and the estimated high pressure value of Biggs et al. (1997). Maricq and Szente (1992b) obtained limited evidence that $k_{\rm obs}$ possesses a weak negative temperature coefficient, but further temperature dependence studies are required to quantify this. #### References Biggs, P., Canosa-Mas, C. E., Frachebound, J. M., Percival, C. J., Wayne, R. P. and Shallcross, D. E.: J. Chem. Soc. Faraday Trans., 93, 379, 1997. Maricq, M. M. and Szente, J. J.: J. Phys. Chem., 96, 4925, 1992. Maricq, M. M. and Szente, J. J.: J. Phys. Chem., 96, 10862, 1992. Nielsen, O. J. and Wallington, T. J.: Ultraviolet absorption spectra of peroxy radicals in the gas phase. In 'Peroxyl Radicals', edited by Z.B. Alfassi. John Wiley and Sons, 1997. Nielsen, O. J., Ellermann, T., Sehested, J., Bartkiewiecz, E., Wallington, T. J. and Hurley, M. D.: Int. J. Chem. Kinet., 24, 1009, 1992. Sehested, J., Mogelberg, T., Fagerstrom, K., Mahmoud, G. and Wallington, T.J.: Int. J. Chem. Kinet., 29, 673, 1997.