IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet oBrOx2

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. This data sheet updated: 29th March 2005.

$HO + CH_2Br_2 \rightarrow H_2O + CHBr_2$

 $\Delta H^{\circ} = -79.6 \text{ kJ mol}^{-1}$

k/cm^3 molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients $1.91 \times 10^{-12} \exp[-(840 \pm 100)/T]$ $(1.13 \pm 0.15) \times 10^{-13}$	243-380 298	Mellouki et al., 1992	PLP-LIF
$1.51 \ge 10^{-12} \exp[-(720 \pm 60)/T]$	288-368	Zhang et al., 1997	DF-RF
$(1.33 \pm 0.14) \ge 10^{-13}$			
Relative Rate Coefficients			
$(9.2 \pm 0.6) \ge 10^{-14}$	298	Orlando et al., 1996	RR (a)
$1.51 \ge 10^{-12} \exp[-(715 \pm 39)/T]$	293-375	DeMore, 1996	RR (b)
1.37 x 10 ⁻¹³	298		

Rate coefficient data

Comments

- (a) HO radicals were generated by the photolysis of O₃ in the presence of H₂O, and acetone was used as the reference compound. CH₂Br₂ and acetone were monitored by FTIR spectroscopy, and a rate coefficient ratio of $k(HO + CH_2Br_2)/k(HO + acetone) = 0.54 \pm 0.03$ was determined. This rate coefficient ratio is placed on an absolute basis by use of a rate coefficient of $k(HO + acetone) = 1.7 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ at 298 K (IUPAC, current recommendation).
- (b) HO radicals were generated by the photolysis of O₃ at 254 nm in the presence of H₂O, and CH₂Cl₂ was used as the reference compound. CH₂Br₂ and CH₂Cl₂ were monitored by FTIR spectroscopy, and a rate coefficient ratio of $k(HO + CH_2Br_2)/k(HO + CH_2Cl_2) = 0.84 \exp[(145 \pm 39)/T]$ was determined. This rate coefficient ratio is placed on an absolute basis by use of a rate coefficient of $k(HO + CH_2Cl_2) = 1.8 \times 10^{-12} \exp(-860/T) \text{ cm}^3$ molecule⁻¹ s⁻¹ (IUPAC, current recommendation).

Preferred Values

 $k = 1.1 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $k = 1.5 \times 10^{-12} \exp(-775/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range } 240-300 \text{ K}.$

Reliability

 $\Delta \log k = \pm 0.15$ at 298 K. $\Delta (E/R) = \pm 200$ K.

Comments on Preferred Values

The room temperature rate coefficients of Mellouki et al. (1992), Orlando et al. (1996), DeMore (1996) and Zhang et al. (1997) range from 9.2 x 10^{-14} cm³ molecule⁻¹ s⁻¹ to 1.43 x 10^{-13} cm³ molecule⁻¹ s⁻¹. The relative rate coefficients of DeMore (1996) and the absolute rate coefficients of Zhang et al. (1997), obtained over the temperature range ~290-370 K, are systematically higher than the absolute rate data of Mellouki et al. (1992), by ~20% at 290 K and ~10% at 370 K. Because the Mellouki et al. (1992) study included measurements down to significantly lower temperatures than did the other studies, and their room temperature rate coefficient is in between those of Orlando et al. (1996), DeMore (1996) and Zhang et al. (1997), the Mellouki et al. (1992) study is used as the basis for the preferred values. While an Arrhenius plot of the Mellouki et al. (1992) have been fitted to the three-parameter expression $k = CT^2 \exp(-D/T)$, resulting in $k = 2.86 \times 10^{-18} T^2 \exp(-246/T)$ cm³ molecule⁻¹ s⁻¹ over the temperature range 243-380 K. The preferred Arrhenius expression, $k = A \exp(-B/T)$, is centered at 265 K and is derived from the three-parameter expression with $A = C e^2 T^2$ and B = D + 2T.

References

DeMore, W. B.: J. Phys. Chem., 100, 5813, 1996

IUPAC,: http://iupac.pole-ether.fr

Mellouki, A., Talukdar, R. K., Schmoltner, A.-M., Gierczak, T., Mills, M. J., Solomon, S. and Ravishankara, A. R.: Geophys. Res. Lett., 19, 2059, 1992.

Orlando, J. J., Tyndall, G. S., Wallington, T. J. and Dill, M.: Int. J. Chem. Kinet., 28, 433, 1996. Zhang, Z., Zhong, J. and Qiu, L.: J. Atmos. Chem., 27, 209, 1997.

