IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet iIOx18

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be re-transmitted or disseminated either electronically or in hard copy without explicit written permission.

This data sheet updated: 23th July 2003.

$IO + NO \rightarrow I + NO_2$

 $\Delta H^{\circ} = -66 \text{ kJ} \cdot \text{mol}^{-1}$

Rate coefficient data

k/cm³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients			
$(1.67 \pm 0.16) \times 10^{-11}$	298	Ray and Watson, 1981 ¹	DF-MS (a)
$(2.8 \pm 0.2) \times 10^{-11}$	298	Inoue et al., 1983 ²	PLP-LIF (b)
$6.9 \times 10^{-12} \exp[(328 \pm 71)/T]$	242-359	Daykin and Wine, 1990 ³	PLP-AS (c)
$(2.17 \pm 0.22) \times 10^{-11}$	298		
$1.02 \times 10^{-11} \exp[(185 \pm 70)/T]$	237-346	Turnipseed et al., 1995 ⁴	PLP-LIF (d)
$(1.92 \pm 0.07) \times 10^{-11}$	298		
$(1.9 \pm 0.5) \times 10^{-11}$	295	Atkinson, Hudgens, and Orr-Ewing, 1999 ⁵	PLP-AS (e)
$8.3 \times 10^{-12} \exp[(269 \pm 85)/T]$	273-353	Knight and Crowley, 2001 ⁶	DF-MS (f)
$2.17 \pm 0.2 \times 10^{-11}$	298		
$4.3 \times 10^{-12} \exp[(397 \pm 65)/T]$	233-346	Hölscher and Zellner, 2002 ⁷	PLP-LIF (g)
$(1.68 \pm 0.11) \times 10^{-11}$	296		
$(1.82 \pm 0.1) \times 10^{-11}$	294	Dillon and Heard, 20038	PLP-LIF (h)
Relative Rate Coefficients			
$7.2 \times 10^{-12} \exp[(330 \pm 160)/T]$	293-366	Buben <i>et al.</i> , 1996 ⁹	DF-RF (i)
2.18×10^{-11}	298*		

Comments

- (a) IO radicals were produced by the reaction $I + O_3$ and monitored by MS in an excess of NO. Pressure varied between 1.33 and 2.8 mbar He.
- (b) IO formed from laser photolysis of $HI-N_2O$ at 193 nm, or $HI-O_3$ at 248 nm. Total pressure was 1.33 mbar He.
- (c) Pulsed laser photolysis of NO_2 - I_2 mixtures at 351 nm. IO radical concentrations were monitored by longpath absorption spectroscopy in an excess of NO. k was found to be independent of pressure over the range 50 mbar to 260 mbar of N_2 .
- (d) Pulsed laser photolysis of N_2O-I_2 mixtures at 193 nm. IO radical concentrations were monitored by LIF in an excess of NO. k was found to be independent of pressure over the range 6.5 mbar to 130 mbar of N_2 .
- (e) Pulsed laser photolysis of N₂O-CF₃I-NO-Ar mixtures at 193 nm. IO radicals were monitored by cavity ring-down spectroscopy at 445.04 nm. *k* was found to be independent of pressure over the range 12.5 mbar to 40 mbar of Ar.
- (f) IO radicals made by $O + I_2$ and detected by MS.

- (g) IO made by laser photolysis of N₂O-CF₃I at 193 nm. Pressure varied between 13 and 130 mbar synthetic air.
- (h) IO made by laser photolysis of N₂O-CF₃I at 193 nm. Pressure varied between 88 and 173 mbar N₂ or synthetic air.
- (i) IO made in photolysis of CH₃I-O₂-O₃ mixtures. Steady state I atom signals were monitored by resonance fluorescence and shown to depend on the relative concentration of O₃ and NO, and the relative rate coefficients for I + O₃ and IO + NO, i.e. $k/k(I + O_3)$ was derived. The expression for k(T) was derived using the temperature dependent, recommended value for $k(I + O_3)$.

Preferred Values

 $k = 1.95 \text{ x } 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $k = 7.15 \text{ x } 10^{-12} \exp(300/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range } 240 \text{ K to } 370 \text{ K}.$

Reliability

```
\Delta \log k = \pm 0.15 \text{ at } 298 \text{ K.}
\Delta (E/R) = \pm 100 \text{ K.}
```

Comments on Preferred Values

Most of the available rate coefficient data for this reaction ¹⁻⁹ are in good agreement, only the result of Inoue *et al.*² is anomalously high. The preferred value of $k = 1.95 \times 10^{-11}$ cm³ molecule ¹ s⁻¹ at 298 K is the mean of all other values.

The preferred expression for k(T) is obtained by taking the mean of the values of E/R of Daykin and Wine,³ Turnipseed *et al.*,⁴ Knight and Crowley,⁶ Hölscher and Zellner,⁷ and Buben *et al.*,⁹ and combining it with a pre-exponential factor adjusted to give the preferred value of k at 298 K.

References

- G. W. Ray and R. T. Watson, J. Phys. Chem. **85**, 2955 (1981).
- ² G. Inoue, M. Suzuki, and N. Washida, J. Chem. Phys. **79**, 4730 (1983).
- ³ E. P. Daykin and P. H. Wine, J. Phys. Chem. **94**, 4528 (1990).
- ⁴ A. A. Turnipseed, M. K. Gilles, J. B. Burkholder, and A. R. Ravishankara, Chem. Phys. Lett. **242**, 427 (1995).
- ⁵ D. B. Atkinson, J. W. Hudgens, and A. J. Orr-Ewing, J. Phys. Chem. A **103**, 6173 (1999).
- ⁶ G. P. Knight and J. N. Crowley, Phys. Chem. Chem. Phys. **3**, 393 (2001).
- D. Hölscher and R. Zellner, Phys. Chem. Chem. Phys. 4, 1839 (2002).
- ⁸ T. J. Dillon and D. E. Heard, J. Photochem. Photobiol. A: Chem. 157, 223 (2003).
- ⁹ S. N. Buben, I. K. Larin, N. A. Messineva, and E. M. Trofimova, Khim. Fiz. **15**, 116 (1996). Available in English as: Chem. Phys. Reports, **15**, 745 (1996).
- 10 IUPAC (2013), http://iupac.pole-ether.fr