IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet iIOx13

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be re-transmitted or disseminated either electronically or in hard copy without explicit written permission.

This data sheet updated: 25th September 2003.

 $IO + HO_2 \rightarrow HOI + O_2$

 $\Delta H^{\circ} = -200 \text{ kJ} \cdot \text{mol}^{-1}$

Rate coefficient data

k/cm³ molecule-1 s-1	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients			
$(6.4 \pm 0.7) \times 10^{-11}$	298	Jenkin, Cox and Hayman, 1991 ¹	MM (a)
$(1.03 \pm 0.13) \times 10^{-10}$	298	Maguin <i>et al.</i> , 1992 ²	DF-MS (b)
$9.3 \times 10^{-12} \exp[(680 \pm 110)/T]$	274-373	Cronkhite et al., 1999 ³	FP-UVA/IR (c)
$(9.7 \pm 2.9) \times 10^{-11}$	298		
$(7.1 \pm 1.6) \times 10^{-11}$	296	Canosa-Mas et al., 1999 ⁴	DF-RF (d)
$2.2 \times 10^{-11} \exp[(400 \pm 80)/T]$	273-353	Knight and Crowley, 2001 ⁵	DF-MS (e)
$(8.9 \pm 0.9) \times 10^{-11}$	298		(f)
$(8.00 \pm 0.15) \times 10^{-11}$	298		(g)

Comments

- (a) Molecular modulation technique with UV absorption detection of HO₂ radicals at 220 nm and visible absorption detection of IO radicals at 427 nm. The radicals were produced by photolysis of O₃-CH₃OH-I₂-O₂ mixtures at 254 nm with HO₂ in excess over IO. The rate coefficient, *k*, was derived from a non-linear least-squares analysis of absorption wave-forms. The error limits do not include possible systematic errors.
- (b) Discharge flow system with MS detection of HO_2 and IO radicals and HOI. IO and HO_2 radicals were produced by the $O(^3P) + I_2$ and $Cl + CH_3OH + O_2$, reactions, respectively. Pseudo first-order decays of IO radicals were measured in the presence of excess HO_2 . The cited value of k is the average of 25 experiments. HOI was shown to be a major product. The uniqueness of the $HOI + O_2$ forming channel could not be established, although no evidence was found for O_3 formation by the alternative $HI + O_3$ channel.
- (c) Pulsed laser photolysis of Cl₂-CH₃OH-O₂-I₂-NO₂-SF₆-N₂ mixtures at 308 nm with simultaneous time-resolved detection of HO₂ radicals (by infrared TDLS) and IO radicals (by visible absorption spectroscopy). HO₂ radicals were generated by the reaction of Cl atoms (from photolysis of Cl₂) with CH₃OH in the presence of O₂, and IO radicals were generated by the reaction of O(³P) atoms (from photolysis of NO₂) with I₂.
- (d) IO generated from $O(^3P) + CF_3I$ (following discharge of O_2). HO_2 generated from $Cl + CH_3OH$ in the presence of O_2 . IO and HO_2 concentrations were monitored by titration to I and OH by the respective reactions with NO. Experiments carried out at 1.7-2 Torr.
- (e) IO generated from O(³P) + CF₃I or O(³P) + I₂ (following discharge of O₂). HO₂ generated from Cl+CH₃OH in the presence of O₂. IO and HO₂ concentrations were monitored directly at their parent peaks. Experiments carried out at 1.3-2.3 mbar.

- (f) IO from $O(^3P) + CF_3I$.
- (g) IO from $O(^{3}P) + I_{2}$.

Preferred Values

 $k = 8.4 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $k = 1.4 \times 10^{-11} \exp(540/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range } 270 \text{ K to } 380 \text{ K}.$

Reliability

 $\Delta \log k = \pm 0.2 \text{ at } 298 \text{ K.}$ $\Delta (E/R) = \pm 300 \text{ K.}$

Comments on Preferred Values

The preferred value at 298 K is the average of the reported room temperature data¹⁻⁵. The preferred Arrhenius expression is based on the E/R values from the temperature dependence studies of Cronkhite *et al.*³ and Knight and Crowley⁵, combined with a pre-exponential factor adjusted to give the preferred value of k at 298 K.

The studies of Maguin *et al.*² and Knight and Crowley⁵ provide strong evidence that the formation of HOI and O_2 is the dominant pathway. On the basis of current thermochemical data for the IO radical, the channel forming HI + O_3 is endothermic by *ca.* 40 kJ mol⁻¹, and a limit of $\leq 10\%$ has been reported for this channel⁵, based on no detectable formation of O_3 . As pointed out by Knight and Crowley⁵, a channel forming OH + OIO is exothermic by 12 kJ mol⁻¹, but no firm evidence for this channel has been reported.

References

- ¹ M. E. Jenkin, R. A. Cox, and G. D. Hayman, Chem. Phys. Lett. **177**, 272 (1991).
- ² F. Maguin, G. Laverdet, G. Le Bras, and G. Poulet, J. Phys. Chem. **96**, 1775 (1992).
- ³ J. M. Cronkhite, R. E. Stickel, J. M. Nicovich, and P. H. Wine, J. Phys. Chem. A **103**, 3228 (1999).
- ⁴ C. E. Canosa-Mas. M. L. Flugge, D. Shah, A. Vipond and R. P. Wayne, J. Atmos. Chem. **34**, 153, 1999.
- ⁵ G. P. Knight and J. N. Crowley, Phys. Chem. Chem. Phys., **3**, 393 (2001).