IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet iClOx4

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be re-transmitted or disseminated either electronically or in hard copy without explicit written permission.

This data sheet updated: 7th June 2007.

$$O + OCIO + M \rightarrow CIO_3 + M$$

 $\Delta H^{\circ} = -126.6 \text{ kJ} \cdot \text{mol}^{-1}$

Low-pressure rate coefficients Rate coefficient data

k ₀ /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients $(1.4 \pm 0.3) \times 10^{-31} [Ar]$ $1.9 \times 10^{-31} (T/298)^{-1.1} [Ar]$	298	Colussi, 1990	PLP-RF (a)
	248-312	Colussi, Sander and Friedl, 1992	PLP-RF (b)

Comments

- (a) Pulsed laser photolysis of OClO at pressures of Ar between 10 and 1000 mbar. The oxygen atoms produced were detected by resonance fluorescence. Fit of the falloff curve used $F_c = 0.6$.
- (b) See comment (a). The falloff curves were fitted with $F_c = 0.5$ at 248 K, 0.48 at 273 K, and 0.45 at 312 K.

Preferred Values

 $k_0 = 1.9 \times 10^{-31} (T/298)^{-1} [N_2] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range } 240-320 \text{ K}.$

Reliability

 $\Delta \log k_0 = \pm 0.3 \text{ at } 298 \text{ K.}$ $\Delta n = \pm 0.5 \text{ K.}$

Comments on Preferred Values

The preferred values are based on the data of Colussi et al. (1992) using falloff extrapolations with a fitted value of $F_c = 0.5$ at 298 K. Low pressure experiments by Gleason et al. (1994) (1.3-7 mbar) indicate the presence of the reaction O + OClO \rightarrow ClO + O₂.

High-pressure rate coefficients Rate coefficient data

k_{∞}/cm^3 molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients			
$(3.1 \pm 0.8) \times 10^{-11}$ 2.8×10^{-11}	298 248-312	Colussi, 1990 Colussi, Sander and Friedl, 1992	PLP-RF (a) PLP-RF (b)

Comments

- (a) See comment (a) for k_0 .
- (b) See comment (b) for k_0 .

Preferred Values

 $k_{\infty} = 2.8 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range } 240-320 \text{ K}.$

Reliability

 $\Delta \log k_{\infty} = \pm 0.3 \text{ at } 298 \text{ K.}$ $\Delta n = \pm 1.$

Comments on Preferred Values

See comments on k_0 . The rate coefficients of Colussi et al. (1992) were confirmed by measurements carried out by Mauldin et al. (1997) at 260 K and 430 mbar of N_2 . Under these conditions (260 K and 430 mbar of N_2), Mauldin et al. (1997) observed that the reaction led to the formation of ClO radicals with a yield of <5%. Mauldin et al. (1997) concluded that the combination reaction may involve the intermediate formation of a species such as O·OClO which is different from ClO₃ and which does not rearrange to give $O_2 + ClO$.

Theoretical modelling of the reaction by Zhu and Lin (2002) led to values of k_{∞} which were a factor of 5-7 higher than obtained from the measurements. As the measurements (Colussi et al., 1992) look well-behaved; they are preferred to the modeling. There is also still some dispute about the heat of reaction, see the calculations by Sicre and Cobos (2003).

References

Colussi, A. J.: J. Phys. Chem., 94, 8922, 1990.

Colussi, A. J., Sander, S. P. and Friedl, R. R.: J. Phys. Chem., 96, 4442, 1992.

Gleason, J. F., Nesbitt, F. L. and Stief, L. J.: J. Phys. Chem., 98, 126, 1994.

Mauldin III, R. L., Burkholder, J. B. and Ravishankara, A. R.: Int. J. Chem. Kinet., 29, 139, 1997.

Sicre, J. E. and Cobos, C. J.: J. Mol. Struct. (Theochem), 620, 215, 2003.

Zhu, R. S. and Lin, M. C.: J. Phys. Chem., A 106, 8386 (2002).