IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet iBrOx13

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be re-transmitted or disseminated either electronically or in hard copy without explicit written permission.

This data sheet updated: 25th September 2003.

$$HO + BrO \rightarrow HO_2 + Br$$

$$\rightarrow HBr + O_2$$
(1)
(2)

$$\Delta H^{\circ}(1) = -30 \text{ kJ} \cdot \text{mol}^{-1}$$

 $\Delta H^{\circ}(2) = -193 \text{ kJ} \cdot \text{mol}^{-1}$

Rate coefficient data $(k = k_1 + k_2)$

k/cm³ molecule-1 s-1	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients			
$(7.5 \pm 4.2) \times 10^{-11}$	300	Bogan <i>et al.</i> , 1996 ¹	DF-MS (a)
$(4.5 \pm 1.8) \times 10^{-11}$	298	Gilles <i>et al.</i> , 2001 ²	DF (b)
$1.65 \times 10^{-11} \exp[(250 \pm 50)/T]$	230-355	Bedjanian et al. 2001 ³	DF-MS (c)
$(3.6 \pm 0.9) \times 10^{-11}$	300	-	(d)
$(3.9 \pm 1.0) \times 10^{-11}$	298		(e)
$(3.85 \pm 0.70) \times 10^{-11}$	299		(f)
Branching ratios			
$k_2/k \le 0.03$	298	Bedjanian et al. 2001 ³	DF-MS (g)

Comments

- (a) BrO radicals generated by passing a O₂-Br₂-He mixture through a microwave discharge. HO radicals generated by the reaction of F atoms (generated in a second microwave discharge) with H₂O. BrO radical concentrations were obtained by titration with NO and measurement of the resulting NO₂ by MS. HO radical concentrations were obtained by titration with Br₂ and measurement of the depletion of Br₂ by MS. The rate coefficient was derived from modelling using a chemical mechanism involving 18 reactions.
- (b) BrO radicals generated from Br + O₃ reaction (following discharge of Br₂). HO radicals generated from pulsed 248 nm laser photolysis of O₃ in the presence of H₂O. BrO and HO were measured by UV absorption and LIF, respectively. Experiments carried out under pseudo-first order conditions with HO in excess.
- (c) BrO generated from either from $O(^3P) + Br_2$ (following discharge of O_2), or from O_3 (following discharge of O_3). Br was also generated by O_3 (following discharge of O_3) for mechanistic studies. HO was generated from either O_3 (following discharge of O_3) and O_3 (following discharge of O_3). BrO and HO concentrations were measured directly at their parent peaks. Experiments carried out under pseudo-first order conditions with HO in excess. O_3 also determined relative to O_3 (HO + O_3) in a separate series of experiments. Results of the two methods are in good agreement and the reported rate coefficient is based on the combined dataset.

- (d) HO generated by $H + NO_2$.
- (e) HO generated by $F + H_2O$.
- (f) Relative rate measurement.
- (g) Based on detection of HBr.

Preferred Values

 $k = 4.1 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $k = 1.8 \times 10^{-11} \exp(250/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range } 230 \text{ K to } 350 \text{ K}.$

Reliability

 $\Delta \log k = \pm 0.3 \text{ at } 298 \text{ K.}$ $\Delta (E/R) = \pm 300 \text{ K.}$

Comments on Preferred Values

The preferred value at 298K is based on the room temperature data of Gilles *et al.*² and Bedjanian *et al.*³ The previous study of Bogan *et al.*¹ is also consistent with this recommendation. The preferred Arrhenius expression is based on the E/R value from the temperature dependence study of Bedjanian *et al.*,³ combined with a pre-exponential factor adjusted to give the preferred value of k at 298 K. The results of Bedjanian *et al.*³ are consistent with channel (a) being the dominant, if not sole, pathway. This conclusion is supported by the theoretical study of Sumathi and Peyerimhoff.⁴

References

- ¹ D. J. Bogan, R. P. Thorn, F. L. Nesbitt, and L. J. Stief, J. Phys. Chem. **100**, 14383 (1996).
- ² M. K. Gilles, D. C. McCabe, J. B. Burkholder and A. R. Ravishankara, J. Phys. Chem. A **105**, 5849 (2001).
- ³ Y. Bedjanian, V. Riffault, G. Le Bras and G. Poulet, J. Phys. Chem. A **105**, 6154 (2001).
- ⁴ R. Sumathi and S. D. Peyerimhoff. Phys. Chem. Chem. Phys. **1**, 3973 (1999).