IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet SOx23

Website: <u>http://iupac.pole-ether.fr</u>. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

This data sheet last evaluated: 28th June 2007; no revision of preferred values.

$HO + CH_3SSCH_3 \rightarrow products$

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients 5.9 x $10^{-11} \exp[(380 \pm 160)/T]$ (1.09 ± 0.18) x 10^{-10}	249-367	Wine et al., 1981	FP-RF
$(1.96 \pm 0.16) \times 10^{-10}$ $6.2 \times 10^{-11} \exp[(410 \pm 210)/T]$ $(2.39 \pm 0.30) \times 10^{-10}$ $(2.4 \pm 0.0) \approx 10^{-10}$	296 297-366 297	Abbatt et al., 1992	DF-LIF
(2.4 \pm 0.9) x 10 ⁻² Relative Rate Coefficients (2.40 \pm 0.86) x 10 ⁻¹⁰	298 297 ± 2	Cox and Sheppard, 1980	(a) RR (b)

Rate coefficient data

Comments

- (a) Discharge-flow system with photoionization-MS detection of CH_3SOH and CH_3S product species. The temporal profiles of these product species yielded the cited rate coefficient. The CH_3S radical formation yield from the HO radical reaction with CH_3SSCH_3 was measured to be 0.28 ± 0.20 using a pulsed laser photolysis system with LIF detection of CH_3S . The photolysis of CH_3SSCH_3 at 266 nm was used to normalize the CH_3S radical signal, with the CH_3S radical formation yield from the photolysis of CH_3SSCH_3 being 1.8 ± 0.2 at 248 nm (Turnipseed et al., 1993).
- (b) A rate coefficient ratio of $k(HO + CH_3SSCH_3)/k(HO + ethene) = 28 \pm 10$ was measured by GC analyses of CH₃SSCH₃ and ethene in irradiated HONO-CH₃SSCH₃-ethene-air mixtures at atmospheric pressure. The measured rate coefficient ratio is placed on an absolute basis by use of a rate coefficient of $k(HO + ethene) = 8.57 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 297 \text{ K}$ and atmospheric pressure of air (Atkinson, 1997).

Preferred Values

 $k = 2.3 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $k = 7.0 \times 10^{-11} \exp(350/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range } 250-370 \text{ K}.$

Reliability

 $\Delta \log k = \pm 0.10$ at 298 K. $\Delta (E/R) = \pm 200$ K.

Comments on Preferred Values

The absolute rate coefficients of Wine et al. (1981), Abbatt et al. (1992) and Dominé and Ravishankara (1992) are in excellent agreement. The preferred values are derived from a least-squares analysis of the absolute rate coefficients of Wine et al. (1981) and Abbatt et al. (1992). The magnitude of the rate coefficient and the negative temperature dependence indicates that the reaction proceeds by initial HO radical addition to the S atoms:

$HO + CH_3SSCH_3 \rightarrow CH_3SS(OH)CH_3$

Dominé and Ravishankara (1992) measured a CH_3S yield of 0.28 ± 0.20 , independent of pressure (73-640 mbar) and diluent gas (N₂ and SF₆) at 298 K, indicating that products other than CH_3S and CH_3SOH are formed in this reaction. Butkovskaya and Setser (1999), from a study of the IR chemiluminescence from the reactions of HO and DO radicals with CH_3SSCH_3 , concluded that the major reaction pathway is that to form CH_3SH (or CH_3SD) + CH_3SO , with these products dominating by a factor of ≥ 3 over formation of $CH_3S + CH_3SOH$ (1999). Hence the studies of Dominé and Ravishankara (1992) and Butkovskaya and Setser (1999) are not inconsistent.

References

Abbatt, J. P. D., Fenter, F. F. and Anderson, J. G.: J. Phys. Chem. 96, 1780, 1992.

Atkinson, R.: J. Phys. Chem. Ref. Data, 26, 215, 1997.

Butkovskaya, N. I. and Setser, D. W.: Chem. Phys. Lett. 312, 37, 1999.

Cox, R. A. and Sheppard, D.: Nature 284, 330, 1980.

Dominé, F. and Ravishankara, A. R.: Int. J. Chem. Kinet. 24, 943, 1992.

Turnipseed, A. A., Barone, S. B. and Ravishankara, A. R.: J. Phys. Chem. 97, 5926, 1993.

Wine, P. H., Kreutter, N. M., Gump, C. A. and Ravishankara, A. R.: J. Phys. Chem. 85, 2660, 1981.