IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet SOx17 Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. This data sheet last evaluated: 28th June 2007; no revision of preferred values. # $HO + OCS \rightarrow products$ ## Rate coefficient data | k/cm³ molecule-1 s-1 | Temp./K | Reference | Technique/ Comments | |---|----------------|-------------------------------|---------------------| | Absolute Rate Coefficients $1.3 \times 10^{-12} \exp[-(2300 \pm 100)/T]$ $(6 \pm 4) \times 10^{-16}$ | 300-517
300 | Leu and Smith, 1981 | DF-RF (a) | | 1.13 x 10 ⁻¹³ exp[-(1200 ± 400)/T]
(2.0 ^{+0.4} _{-0.8}) x 10 ⁻¹⁵ | 255-483
300 | Cheng and Lee, 1986 | DF-RF (b) | | $(1.92 \pm 0.25) \times 10^{-15}$ | 298 | Wahner and Ravishankara, 1987 | FP/PLP-LIF (c) | #### **Comments** - (a) The measured HO radical decay rates were corrected for the presence of H_2S in the OCS sample used (0.01 \pm 0.003% H_2S for the experiments at 300-421 K and 0.04 \pm 0.01% H_2S for the experiments at 517 K). At 300 K the measured rate coefficient, uncorrected for the presence of H_2S , was 1.0×10^{-15} cm³ molecule⁻¹ s⁻¹. - (b) The purity of OCS was checked by FTIR spectroscopy, showing that H_2S was present at less then 0.005%. The measured rate coefficient k was independent of pressure (1.2-7.9 mbar) and the addition of O_2 (up to 18% or 0.36 mbar of O_2). - (c) The rate coefficient k was independent of pressure (120-400 mbar), the nature of buffer gas, and the addition of O_2 (up to 48 mbar). ### **Preferred Values** $k = 2.0 \text{ x } 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $k = 1.1 \text{ x } 10^{-13} \exp(-1200/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range } 250-500 \text{ K}.$ ### Reliability $\Delta \log k = \pm 0.3 \text{ at } 298 \text{ K.}$ $\Delta (E/R) = \pm 500 \text{ K.}$ ## Comments on Preferred Values The rate coefficients measured by Cheng and Lee (1986) and Wahner and Ravishankara (1987) are approximately a factor of 3 higher at 298 K than the earlier value of Leu and Smith (1981). This may be due to the corrections applied by Leu and Smith (1981) to account for the presence of traces of H₂S in their system, because in the absence of any correction to the measured rate coefficient of Leu and Smith¹ there is reasonable agreement between the studies (Leu and Smith, 1981; Cheng and Lee, 1986; Wahner and Ravishankara, 1987). Cheng and Lee (1986) took care to keep the H₂S level in their OCS very low and this, together with the confirmatory measurements of Wahner and Ravishankara (1987), leads us to recommend their values. These recommendations are compatible with the earlier upper limits given by Atkinson et al. (1978) and Ravishankara et al. (1980), but not with the higher value obtained by Kurylo (19078), which may have been due to the occurrence of interfering secondary chemistry and/or excited state reactions. Kurylo and Laufer (1979) have suggested that the reaction proceeds through adduct formation, as found for the reaction of HO with CS_2 , followed by decomposition of the adduct to yield mainly HS + CO_2 . This is supported by the product study of Leu and Smith (1981) at 517 K. However, in contrast to the HO + CS_2 reaction, there is no marked effect of O_2 on the rate coefficient. Furthermore, very little oxygen atom exchange between H¹⁸O and OCS is found (Greenblatt and Howard, 1989), which may suggest that any adduct formed is weakly bound and short-lived. #### References Atkinson, R., Perry, R. A. and Pitts Jr., J. N.: Chem. Phys. Lett. 54, 14, 1978. Cheng, B.-M. and Lee, Y.-P.: Int. J. Chem. Kinet. 18, 1303, 1986. Greenblatt, G. D. and Howard, C. J.: J. Phys. Chem. 93, 1035, 1989. Kurylo, M. J. and Laufer, A. H.: J. Chem. Phys. 70, 2032, 1979. Kurylo, M. J.: Chem. Phys. Lett. 58, 238, 1978. Leu, M.-T. and Smith, R. H.: J. Phys. Chem. 85, 2570, 1981. Ravishankara, A. R., Kreutter, N. M., Shah, R. C. and Wine, P. H.: Geophys. Res. Lett. 7, 861, 1980. Wahner, A. and Ravishankara, A. R.: J. Geophys. Res. 92, 2189, 1987.