IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet R Oxygen 2

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. This data sheet updated: 22nd November 2006.

$CH_3 + O_3 \rightarrow products$

Rate coefficient data

k/cm^3 molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients $5.1 \ge 10^{-12} \exp[-(210 \pm 84)/T]$ $(2.53 \pm 0.54) \ge 10^{-12}$ $(2.2 \pm 0.2) \ge 10^{-12}$	243-384 298 298	Ogryzlo et al., 1981 Paltenghi et al., 1984 Albaladejo et al., 2002	FP-MS (a) PLP-LIF (b)

Comments

- (a) Flash photolysis of CH₃NO₂ at 193 nm in a flow system with He carrier gas at pressures of ~2.7 mbar (~2 Torr). [CH₃] was monitored by photoionization MS under pseudo-first-order conditions; no product analyses. The original data (Ogryzlo et al., 1981) were revised (Paltenghi et al., 1984) on the basis of a correction for the pressure drop along the flow tube between the reaction vessel and the manometer.
- (b) Pulsed laser photolysis of CH₃Br at 193 nm and 133 mbar (100 Torr) He coupled with laserexcited fluorescence detection of CH₃O at 292.4 nm in a slow-flow cell. The rate coefficient for total removal of CH₃ was determined by numerical analysis of the temporal profiles of the CH₃O signal. The calibration of the CH₃O concentration was performed by comparing LIF signals with those for the reaction $CH_3 + NO_2$ obtained under identical conditions. The CH_3O absolute yield is 0.044 \pm 0.013 and leads to $k = (9.68 \pm 1.10) \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ for the reaction $CH_3 + NO_2 \rightarrow CH_3O + O_2$.

Preferred Values

 $k = 2.3 \text{ x} 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $k = 4.7 \times 10^{-12} \exp(-210/T)$ cm³ molecule⁻¹ s⁻¹ over the temperature range 240 to 400 K.

Reliability

 $\Delta \log k = \pm 0.3$ at 298 K. $\Delta(E/R) = \pm 200 \text{ K}.$

Comments on Preferred Values

The preferred values are based on the mean of the revised calculations by Paltenghi et al. (1984) of the earlier data of Ogryzlo et al. (1981) and of the data of Albaladejo et al. (2002).

References

Albaladejo, J., Jimenez, E., Notario, A., Cabañas, B., and Martinez, E.: J. Phys. Chem. A 106, 2512, 2002.

Ogryzlo, E. A., Paltenghi, R., and Bayes, K. D.: Int. J. Chem. Kinet. 13, 667, 1981.

Paltenghi, R., Ogryzlo, E. A., and Bayes, K. D.: J. Phys. Chem. 88, 2595, 1984.