IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet R Oxygen 14

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Datasheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

This datasheet updated: 12th June 2003.

$CH_2CH_2OH + O_2 \rightarrow products$

Rate coefficient data

k/cm³ molecule-1 s-1	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients $(3.0 \pm 0.4) \times 10^{-12}$	293	Miyoshi, Matsui and Washida, 1989 ¹	PLP-MS (a)

Comments

(a) Pulsed laser photolysis of ClCH₂CH₂OH and BrCH₂CH₂OH in a large excess of He at total pressures of 2.7 mbar to 9.3 mbar (2 Torr to 7 Torr). CH₂CH₂OH radicals were monitored by photoionization MS in the presence of excess O₂.

Preferred Values

 $k = 3.0 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$

Reliability

 $\Delta \log k = \pm 0.3 \text{ at } 298 \text{ K}.$

Comments on Preferred Values

The direct measurements¹ of this rate coefficient, from the pulsed laser photolysis of either $ClCH_2CH_2OH$ or $BrCH_2CH_2OH$ as the radical source, showed a good level of consistency. By analogy with the reactions $C_2H_5 + O_2 + M \rightarrow C_2H_5O_2 + M$ and $CH_3CO + O_2 + M \rightarrow CH_3CO_3 + M$ (this evaluation), the rate coefficient for this reaction is expected to be close to the high-pressure limit under the experimental conditions employed. The UV absorption spectrum of the $HOCH_2CH_2O_2$ radical has been observed²³³ by pulse radiolysis of SF_6-H_2O mixtures² and pulsed laser photolysis of H_2O_2 in the presence of C_2H_4 and O_2 .³ These observations indicate that the reaction between CH_2CH_2OH radicals and O_2 leads predominantly to the adduct peroxy radical.

References

- ¹ A. Miyoshi, H. Matsui, and N. Washida, Chem. Phys. Lett. **160**, 291 (1989).
- ² C. Anastasi, D. J. Muir, V. J. Simpson, and P. Pagsberg, J. Phys. Chem. **95**, 5791 (1991).
- T. P. Murrells, M. E. Jenkin, S. J. Shalliker, and G. D. Hayman, J. Chem. Soc. Faraday Trans. **87**, 2351 (1991).