IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet R_Oxygen_13

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

This data sheet updated: 12th June 2003.

$CH_3CHOH + O_2 \rightarrow CH_3CHO + HO_2$

 $\Delta H^{\circ} = -87.6 \text{ kJ} \cdot \text{mol}^{-1}$

Rate coefficient data

k/cm^3 molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients { $1.4 \times 10^{-8} T^{-1.2} +$ $8.0 \times 10^{-10} \exp(-2525/T)$ }	300-682	Grotheer et al., 1988 ¹	DF-MS (a)
$\begin{array}{c} 1.56 \text{ x } 10^{-11} \\ (1.3 \pm 0.2) \text{ x } 10^{-11} \\ (2.8 \pm 0.2) \text{ x } 10^{-11} \end{array}$	300 300 293	Anastasi <i>et al.</i> , 1989 ² Miyoshi, Matsui and Washida, 1989 ³	PR-AS (b) PLP-MS (c)

Comments

- (a) CH₃CHOH was generated from Cl + C₂H₅OH in the presence of a large excess of O₂ at total pressures of ~1 mbar (~0.8 Torr). The rate coefficient *k* was derived from the disappearance of CH₃CHOH, as monitored by low electron energy MS.
- (b) Pulsed radiolysis of Ar-SF₆-HCl-C₂H₅OH-O₂ mixtures at total pressures of 1 bar (760 Torr) and with $[SF_6] \gg [HCl] \gg [C_2H_5OH] \gg [O_2]$. CH₃CHOH was generated from Cl + C₂H₅OH and monitored by UV absorption at 260 nm.
- (c) Pulsed laser photolysis of $CH_3COCHOHCH_3$ in a large excess of He at total pressures of 2.7 mbar to 9.3 mbar (2 Torr to 7 Torr). CH_3CHOH was monitored by photoionization MS in the presence of excess O_2 .

Preferred Values

 $k = 1.9 \text{ x} 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$

Reliability

 $\Delta \log k = \pm 0.3$ at 298 K.

Comments on Preferred Values

The preferred value of k_{298} is the mean of the results of Grotheer *et al.*,¹ Anastasi *et al.*² and Miyoshi *et al.*³ The rather large discrepancy between the data of Miyoshi *et al.*³ and the other two studies^{1,2} could be due to the different sources of generation of the CH₃CHOH radical. CH₃CHOH radical generation^{1,2} involving Cl attack on C₂H₅OH may not be as clean a source as is the photolysis³ of CH₃COCHOHCH₃.

The temperature dependence of the rate coefficient determined by Grotheer *et al.*¹ shows a marked non-Arrhenius behavior, but this needs to be confirmed before a recommendation can

be made. Evidence for the reaction between CH_3CHOH and O_2 yielding CH_3CHO as a major product comes from the product study of the photooxidation of ethanol by Carter *et al.*⁴

References

- ¹ H.-H. Grotheer, G. Riekert, D. Walter, and Th. Just, 22nd International Symposium on Combustion, 1988 (Combustion Institute, Pittsburgh, PA, 1989), pp. 963-972.
- ² C. Anastasi, V. Simpson, J. Munk, and P. Pagsberg, Chem. Phys. Lett. 164, 18 (1989).
- ³ A. Miyoshi, H. Matsui, and N. Washida, Chem. Phys. Lett. **160**, 291 (1989).
- ⁴ W. P. L. Carter, K. R. Darnall, R. A. Graham, A. M. Winer, and J. N. Pitts, Jr., J. Phys. Chem. **83**, 2305 (1979).