IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet ROO 5

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

This data sheet updated: 3rd July 2005.

$$i-C_3H_7O_2 + NO \rightarrow i-C_3H_7O + NO_2$$
 (1)
 $i-C_3H_7O_2 + NO + M \rightarrow i-C_3H_7ONO_2 + M$ (2)

 $\Delta H^{\circ}(1) = -40.5 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta H^{\circ}(2) = -212.2 \text{ kJ} \cdot \text{mol}^{-1}$

Rate coefficient data $(k = k_1 + k_2)$

k/cm³ molecule-1 s-1	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients			
$(3.5 \pm 0.3) \times 10^{-12}$	298	Adachi and Basco, 1982	FP-AS
$(5.0 \pm 1.2) \times 10^{-12}$	290	Peeters et al., 1992	DF-MS (a)
$2.7 \times 10^{-12} \exp[(360 \pm 60)/T]$ $(9.0 \pm 1.5) \times 10^{-12}$	201-401 298	Eberhard et al., 1996	F-CIMS (b)
$(9.1 \pm 1.5) \times 10^{-12}$	298	Eberhard and Howard, 1996	F-CIMS (c)
$4.3 \times 10^{-12} \exp[(268 \pm 56)/T]$ $(1.05 \pm 0.14) \times 10^{-11}$	213-298 298	Chow et al., 2003	F-CIMS (d)
$(8.0 \pm 1.5) \times 10^{-12}$	298	Xing et al., 2005	LP-MS (e)
Branching Ratios			
$k_2/k = 0.042 \pm 0.003$ (1 bar air)	299	Atkinson et al., 1982; Carter and Atkinson, 1989	(f)
$k_2/k = 1.815 \times 10^{-4} \exp(1020/T)$ (133 mbar N ₂)	213-298	Chow et al., 2003	F-CIMS (d)
$k_2/k = 0.005$ (133 mbar N ₂)	298		

Comments

- (a) Low pressure flow tube at 2.7 mbar He. Rate constant derived from analysis of NO₂ growth profiles.
- (b) i-C₃H₇O₂ radicals produced by reaction of O₂ with i-C₃H₇ radicals produced by thermal decomposition of isobutyl nitrate. i-C₃H₇O₂ was detected as its parent negative ion formed by reaction with O₂-. k determined by pseudo-first order loss of i-C₃H₇O₂ in the presence of NO.
- (c) *i*-C₃H₇O₂ produced by reaction of O₂ with *i*-C₃H₇ produced in a low frequency RF discharge through *i*-propyl iodide.
- (d) Turbulent flow reactor at 100 Torr (133 mbar) N₂ total pressure. C₃H₇O₂ radicals were generated by the reaction of Cl atoms with C₃H₈ in the presence of O₂, thus both *n*-C₃H₇O₂ and *i*-C₃H₇O₂ were present and the rate coefficients measured are overall values for both isomers, which were detected as C₃H₇OOH⁺(H₂O)₃ following reaction with H⁺(H₂O)₄ ions. For branching ratio measurements, *i*-C₃H₇O₂ was selectively generated from the reaction of

- H atoms with C_3H_6 in the presence of O_2 . i- $C_3H_7ONO_2$ was detected using $H^+(H_2O)_4$ ions; NO_2 was detected as NO_2 following electron transfer from SF_6 .
- (e) *i*-C₃H₇O₂ generated by reaction of *i*-C₃H₇ with O₂, whereby *i*-C₃H₇ radicals were generated in the 193 nm photolysis of *i*-C₃H₇Br, or the 248 nm photolysis of *i*-C₃H₇I. *i*-C₃H₇O₂ was detected as the negative parent ion following electron transfer from high Rydberg state Xe atoms. The bath gas was was 4 5.3 mbar (He). Owing to poor sensitivity, and resultant side/secondary reactions the rate coefficient was extracted by numerical modelling of a complex reaction scheme.
- (e) Photolysis of CH₃ONO-NO-C₃H₈-air or Cl₂-NO-C₃H₈-air mixtures at a total pressure of 1 bar. The branching ratio was determined from the measured yields of *i*-C₃H₇ONO₂ and the consumption of C₃H₈. Carter and Atkinson (1989) have re-evaluated the branching ratio, cited above, from the original data (Atkinson et al., 1982) on the basis of revised data for the rate coefficients of the HO radical reactions with alkanes.

Preferred Values

 $k = 9.0 \text{ x } 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $k = 2.7 \text{ x } 10^{-12} \exp(360/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range } 200 \text{ K to } 410 \text{ K}.$ $k_2/k = 0.042 \text{ at } 298 \text{ K and } 1 \text{ bar pressure}.$

Reliability

 $\Delta \log k = \pm 0.1$ at 298 K. $\Delta (E/R) = \pm 100$ K. $\Delta \log(k_2/k) = \pm 0.3$ at 298 K and 1 bar pressure.

Comments on Preferred Values

The data from Eberhard et al. (1986) give a rate coefficient at 298 K which is significantly larger that the values obtained by Adachi and Basco (1982) or Peeters et al. (1992) and is close to the value obtained for a range of alkyl peroxy radicals at 298 K. In addition, the data of Chow et al. (2003), who measured a weighted average value for n-C₃H₇O₂ and i-C₃H₇O₂ are in good agreement, which confirms that n-C₃H₇O₂ and i-C₃H₇O₂ have similar rate coefficients for reaction with NO. The rather indirect measurement of Xing et al. (2005) is also in broad agreement. The preferred value for k₂₉₈ and the temperature dependence is that reported by Eberhard et al. (1996).

There are two studies of the branching ratio to $i\text{-}C_3H_7\text{ONO}_2$ formation. Chow et al. (2003) report values that vary from ≈ 0.005 at room temperature to 0.02 at 213 K, whereas Carter and Atkinson (1989) report 0.042 at 298 K. The differences in these results are a result of the pressure difference in the two experiments reported, implying that k_2 is in the third-order limit at 133 mbar N_2 . For purpose of atmospheric modelling of the lower troposphere, the recommended branching ratio is that reported by Carter and Atkinson (1989). Chow et al. (2003) note that their temperature dependence is reproduced using a model based on $C_3 - C_8$ hydrocarbons (Arey et al., 2001).

References

Adachi, H. and Basco, N.: Int. J. Chem. Kinet. 14, 1243, 1982.

Atkinson, R., Aschmann, S. M., Carter, W. P. L., Winer, A. M. and Pitts, Jr. J. N.: J. Phys. Chem. 86, 4563, 1982.

Arey, J., Aschmann, S. M., Kwok. E. S. C. and Atkinson, R.: J. Phys. Chem. A 105, 1020, 2001.

Carter, W. P. L. and Atkinson, R.: J. Atmos. Chem. 8, 165, 1989.
Chow, J. M., Miller, A. M and Elrod, M. J.: J. Phys. Chem. A 107, 3040, 2003.
Eberhard, J., Villalta, P. W. and Howard, C. J.: J. Phys. Chem. 100, 993, 1996.
Eberhard, J. and Howard, C. J.: Int. J. Chem. Kinet. 28, 731, 1996.
Peeters, J., Vertommen, J. and Langhans, I.: Ber. Bunsenges. Phys. Chem. 96, 431, 1992.
Xing, J.-H. and Miyoshi, A.: J. Phys. Chem. A 109, 4095, 2005.