IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet ROO_4

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.
This data sheet updated: 3rd July 2005.

\[n\text{-C}_3\text{H}_7\text{O}_2 + \text{NO} \rightarrow n\text{-C}_3\text{H}_7\text{O} + \text{NO}_2 \quad \text{(1)} \]
\[n\text{-C}_3\text{H}_7\text{O}_2 + \text{NO} + \text{M} \rightarrow n\text{-C}_3\text{H}_7\text{ONO}_2 + \text{M} \quad \text{(2)} \]

Rate coefficient data \((k = k_1 + k_2) \)

<table>
<thead>
<tr>
<th>(k)/cm(^3) molecule(^{-1}) s(^{-1})</th>
<th>Temp./K</th>
<th>Reference</th>
<th>Technique/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Rate Coefficients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2.9 \times 10^{-12} \exp[(350 \pm 60)/T])</td>
<td>201-402</td>
<td>Eberhard and Howard, 1996</td>
<td>F-CIMS(a)</td>
</tr>
<tr>
<td>((9.4 \pm 1.6) \times 10^{-12})</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4.3 \times 10^{-12} \exp[(268 \pm 56)/T])</td>
<td>213-298</td>
<td>Chow et al., 2003</td>
<td>F-CIMS (b)</td>
</tr>
<tr>
<td>((1.05 \pm 0.14) \times 10^{-11})</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Branching Ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k_2/k = 0.020 \pm 0.009)\ (1 bar)</td>
<td>299</td>
<td>Atkinson et al., 1982</td>
<td>(c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carter and Atkinson, 1989</td>
<td></td>
</tr>
</tbody>
</table>

Comments

(a) \(n\text{-C}_3\text{H}_7\text{O}_2 \) radicals were produced by pyrolysis of \(n\text{-C}_3\text{H}_7\text{ONO}_2 \) in the presence of \(\text{O}_2 \) and detected by CIMS. Pseudo-first order kinetics with excess NO.

(b) Turbulent flow reactor at 133 mbar \(\text{N}_2 \) total pressure. \(\text{C}_3\text{H}_7\text{O}_2 \) radicals were generated by the reaction of \(\text{Cl} \) atoms with \(\text{C}_3\text{H}_8 \) in the presence of \(\text{O}_2 \), thus both \(n\text{-C}_3\text{H}_7\text{O}_2 \) and i-\(\text{C}_3\text{H}_7\text{O}_2 \) were present and the rate coefficients measured are overall values for both isomers, which were detected as \(\text{C}_3\text{H}_7\text{OOH}^+\text{(H}_2\text{O})_3 \) following reaction with \(\text{H}^+\text{(H}_2\text{O})_4 \) ions.

(c) Based on yield of \(n\text{-C}_3\text{H}_7\text{ONO}_2 \) product from photo-oxidation of \(\text{C}_3\text{H}_8 \) in \(\text{NO}_x\)-air mixtures. Carter and Atkinson (1989) revised the analysis of original data to provide the values quoted.

Preferred Values

\[k = 9.4 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \] at 298 K.
\[k = 2.9 \times 10^{-12} \exp(350/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \] over the temperature range 200 K to 410 K.
\[k_2/k = 0.020 \] at 298 K and 1 bar pressure.

Reliability

\[\Delta \log k = \pm 0.2 \] at 298 K.
\[\Delta (E/R) = \pm 100 \text{ K}. \]
\[\Delta \log(k_2/k) = \pm 0.3 \] at 298 K and 1 bar pressure.

Comments on Preferred Values

The measurements of Eberhard and Howard (1996) provide the only experimental data on the isomer-specific rate coefficient. The data of Chow et al. (2003), who measured a
weighted average value for \(n{-}\text{C}_3\text{H}_7\text{O}_2 \) and \(i{-}\text{C}_3\text{H}_7\text{O}_2 \) are in good agreement, which confirms that \(n{-}\text{C}_3\text{H}_7\text{O}_2 \) and \(i{-}\text{C}_3\text{H}_7\text{O}_2 \) have similar rate coefficients for reaction with NO. The negative temperature coefficient is consistent with that observed for the rate coefficient for other RO\(_2\) + NO reactions. The recommendation accepts the Arrhenius expression of Eberhard and Howard (1996).

The preferred branching ratio for \(n \)-propyl nitrate formation is that measured by Atkinson et al. (1982), as revised by Carter and Atkinson (1989).

References