IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet PNOx3

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hard copy without explicit written permission. This data sheet updated: 16th July 2001.

 $HO_2NO_2 + h\nu \rightarrow products$

Reaction		$\Delta H^{\circ}/kJ \text{ mol}^{-1}$	$\lambda_{\text{threshold}}/nm$
$HO_2NO_2 + hv \rightarrow HO_2 + NO_2$	(1)	100	1191
$\rightarrow HO + NO_3$	(2)	164	731

Primary photochemical transitions

Absorption cross-section data

Wavelengt	h range/nm	Reference	Comments
	190-330 210-330	Molina and Molina, 1981 ¹ Singer <i>et al.</i> , 1989 ²	(a) (b)
		Quantum yield data	
Measurement	Wavelength/nm	Reference	Comments
$\phi_2 \ \phi_1$	248 248	Mac Leod, Smith, and Golden, 1988 ³ Roehl <i>et al.</i> , 2001 ⁴	(c) (d)

Comments

- (a) Measured at 298 K and 1 bar total pressure. HO₂NO₂ was prepared in a flowing N₂ stream in the presence of H₂O, H₂O₂, and HO₂. The composition of the mixture was established by FTIR spectroscopy, by the absorption spectrum in the visible, and by chemical titration after absorption in aqueous solutions. Two methods were used to prepare the HO₂NO₂. In the first, 70% nitric acid was mixed with 90% H₂O₂, while in the second method solid nitroniumtetrafluoroborate (NO₂BF₄) was added to a solution of 90% H₂O₂.
- (b) Cross-sections were measured at 298 K, 273 K, and 253 K. Pernitric acid was produced *in situ* by photolysis of Cl₂-H₂-NO₂-air mixtures and averaged absorption measurements were made at small extents of reaction. The relative spectrum over the range 210-230 nm was measured at a

resolution of 1 nm in flowing mixtures of pernitric acid vapour obtained from the reaction of BF_4NO_2 and H_2O_2 . The spectrum was corrected for the impurities NO_2 , H_2O_2 , and HNO_3 , which were determined by IR spectroscopy.

- (c) Laser photolysis of pernitric acid at 248 nm. The HO radicals were detected by LIF and their yield determined relative to the HO yield from H₂O₂ photolysis, with the assumption that the rotational distribution of the HO from the HO₂NO₂ and the H₂O₂ was the same under the conditions of the experiment. A value of $\phi_2 = 0.34\pm0.16$ was obtained after correction for impurities in the pernitric acid sample. Fluorescence from NO₂^{*} was observed after photolysis and was assigned to production via channel (1). The upper limit for NO₂^{*} production was 30%. It was concluded that under atmospheric conditions $\phi_1 \approx 0.65$ and $\phi_2 \approx 0.35$.
- (d) Laser photolysis of pernitric acid at 248 nm. The NO₂ was detected by LIF at 511 nm. The quantum yield for NO₂ production was obtained by comparison with HNO₃ photolysis under the same conditions and taking the quantum yield for NO₂ production from HNO₃ to be unity. Experiments made over a range of pressures and concentrations gave $\phi(NO_2) = 0.56 \pm 0.17$.

Preferred Values

λ/nm	$10^{20} \sigma/cm^2$	λ/nm	$10^{20}\sigma/cm^2$
190	1010	265	22.9
195	816	270	18.0
200	563	275	13.3
205	367	280	9.3
210	239	285	6.2
215	161	290	3.9
220	118	295	2.4
225	93.2	300	1.4
230	78.8	305	0.85
235	68.0	310	0.53
240	57.9	315	0.39
245	49.7	320	0.24
250	41.1	325	0.15
255	34.9	330	0.09
260	28.4		

Absorption cross-sections of HO₂NO₂ at 296 K

Quantum Yields at 298 K

 $\phi_1 = 0.59$ at 248 nm. $\phi_2 = 0.41$ at 248 nm.

Comments on Preferred Values

The preferred values of the absorption cross-sections are based on the data of Molina and Molina¹ and of Singer *et al.*,² which are in excellent agreement at wavelengths in the range 210-300 nm. Between 300 nm and 320 nm the cross-sections of Singer *et al.*² are approximately a factor of 2 lower. A simple mean of the two data sets is taken over the whole wavelength range.

When the value of $\phi(HO)$ determined by Mac Leod *et al.*³ at 248 nm is revised to take into account the present recommendation for the absorption cross-section for H₂O₂ a slightly higher

value of 0.39 is obtained. This is in very good agreement with the value of 0.44 implied by the recent measurement of $\phi(NO_2)$ by Roehl *et al.*⁴ at 248 nm. The preferred values of ϕ_1 and ϕ_2 are the average of the values from the studies of Roehl *et al.*⁴ and MacLeod *et al.*³ The uncertainties in the quantum yields are large and it should be noted that the recommendations are restricted to a single wavelength.

Photodissociation of HO_2NO_2 via high-lying O-H overtone absorptions in the visible region of the spectrum is energetically possible for the $3v_{OH}$ and higher overtones. Zhang *et al.*⁵ have measured absorption cross-sections at 273 K for the $3v_{OH}$ and $4v_{OH}$ transitions using conventional long-path-length absorption spectroscopy. Assuming that such absorptions are dissociative for HO_2NO_2 the values obtained imply that these modes will play a small role in the photochemistry of the lower stratosphere,

References

- ¹ L. T. Molina and M. J. Molina, J. Photochem. **15**, 97 (1981).
- ² R. J. Singer, J. N. Crowley, J. P. Burrows, W. Schneider, and G. K. Moortgat, J. Photochem. Photobiol. **48**, 17 (1989).
- ³ H. Mac Leod, G. P. Smith, and D. M. Golden, J. Geophys. Res. **93**, 3813 (1988).
- ⁴ C. M. Roehl, T. L. Mazely, R. R. Friedl, Y. Li, J. S. Francisco, and S. P. Sander, J. Phys. Chem. A **105**, 1592 (2001).
- ⁵ H. Zhang, C. M. Roehl, S. P. Sander, and P. O. Wennberg, J. Geophys. Res. **105**, 14593 (2000).