(C(CH₃)=CH₂)CHOO (Z- and E-) + hν → products

Primary photochemical transitions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C(CH₃)=CH₂)CHOO + hν → CH₂=CH(CH₃)CO + O(³P)</td>
<td>(1)</td>
</tr>
<tr>
<td>→ CH₂=CH(CH₃)CO + O(¹D)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Absorption cross-section data

<table>
<thead>
<tr>
<th>Wavelength range/nm</th>
<th>Reference</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>315-500</td>
<td>Vansco et al., 2019</td>
<td>(a)</td>
</tr>
</tbody>
</table>

Comments

(a) Methacrolein oxide, (C(CH₃)=CH₂)CHOO, was prepared by PLP (248 nm) of (Z/E)-1,3-diiodobut-2-ene in O₂/Ar mixtures in a capillary tube. The photoproducts were cooled in a supersonic expansion and passed to a TOF mass spectrometer where they were ionised with VUV radiation at 118 nm. The UV absorption spectrum was determined from depletion of the m/z = 86 photo-ionisation signal resulting from excitation of the Π* ← Π transition of ground state (C(CH₃)=CH₂)CHOO molecules by tunable UV radiation (305 – 480 nm). The UV-induced depletion increased linearly with UV power and an absorption cross section at 380 nm of approximately 3 × 10⁻¹⁸ cm² molecule⁻¹ was estimated.

Preferred Values

Absorption cross-sections at 298 K relative to value at 380 nm

<table>
<thead>
<tr>
<th>λ/nm</th>
<th>σ/σ₃₈₀nm</th>
<th>λ/nm</th>
<th>σ/σ₃₈₀nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>320</td>
<td>0.886</td>
<td>410</td>
<td>0.823</td>
</tr>
<tr>
<td>330</td>
<td>0.850</td>
<td>420</td>
<td>0.759</td>
</tr>
<tr>
<td>340</td>
<td>0.749</td>
<td>430</td>
<td>0.672</td>
</tr>
<tr>
<td>350</td>
<td>0.749</td>
<td>440</td>
<td>0.471</td>
</tr>
<tr>
<td>360</td>
<td>0.886</td>
<td>450</td>
<td>0.466</td>
</tr>
<tr>
<td>370</td>
<td>0.938</td>
<td>460</td>
<td>0.270</td>
</tr>
<tr>
<td>380</td>
<td>1.000</td>
<td>470</td>
<td>0.249</td>
</tr>
<tr>
<td>390</td>
<td>0.957</td>
<td>480</td>
<td>0.170</td>
</tr>
<tr>
<td>400</td>
<td>0.883</td>
<td>490</td>
<td>0.098</td>
</tr>
</tbody>
</table>
Quantum Yields

\[\phi_1 = 1.0 \text{ for } 315 < \lambda < 500 \text{ nm.} \]

Comments on Preferred Values

The only reported study of UV absorption spectrum of the methacrolein oxide Criegee intermediate, \((\text{C(CH}_3\text{)}=\text{CH}_2)\text{CHOO}\), was obtained by Vansco et al. (2019). The UV photodissociation action spectrum technique was used to record the spectrum of a mixture of the four conformers of \((\text{C(CH}_3\text{)}=\text{CH}_2)\text{CHOO}\) (i.e. two rotamers of each of Z- and E- \((\text{C(CH}_3\text{)}=\text{CH}_2)\text{CHOO}\)). The spectrum in the range 315-500 nm was broad with structured at wavelengths > 400 nm with a maximum at 380 nm which was estimated to be approximately 3 \(\times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1} \). In light of the rough estimate no recommendation is given for the absolute absorption cross sections, but the shape of the spectrum is indicated in the table above. Absorption at \(\lambda < 500 \text{ nm} \) leads to rapid dissociation to methacrolein and \(\text{O}^{(1}\text{D}) \) atoms which were detected using 2 + 1 REMPI. The photodissociation quantum yields are likely to be close to unity.

References

Absorption spectrum of \((\text{C(CH}_3\text{)}=\text{CH}_2)\text{CHOO}\), Z- and E- conformers not resolved, from Figure 4 in Vansco et al. (2019).