Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet NO3_VOC44

Datasheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

The citation for this data sheet is: Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, (<u>http://iupac.pole-ether.fr</u>) This datasheet last evaluated: June 2015; last change in preferred values: June 2015.

$NO_3 + (HCO)_2 \rightarrow HC(O)CO + HNO_3$

k/cm^3 molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients (4.2 ± 0.8) x 10^{-16} (7.9 ± 3.6) x 10^{-16}	296 353	Talukdar et al., 2011	FT-CIMS (a)
Relative Rate Coefficients (4.0 ± 1.0) x 10^{-16} (3.4 ± 0.2) x 10^{-16}	296	Talukdar et al., 2011	RR (b) RR (c)

Rate coefficient data

Comments

- (a) Flow tube operated at 2-6 Torr He. NO₃ (initially $1-5 \times 10^{11}$ molecule cm⁻³) was generated from the thermal decomposition of N₂O₅ and detected with iodide-CIMS. (HCO)₂ was in 1000 fold excess over NO₃.
- (b) Experiments in 22 L Pyrex reactor at 840 mbar air. NO₃ was generated by the thermal decomposition of N₂O₅, (HCO)₂ and the reference reactant (C₂H₄) were monitored exsitu using FTIR. CF₃CF=CHF was added as OH scavenger. The rate coefficient ratio, $k(NO_3 + (HCO)_2) / k(NO_3 + C_2H_4) = 1.9 \pm 0.2$, was placed on an absolute basis using $k(NO_3 + C_2H_4) = 2.1 \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ (IUPAC, current recommendation).
- (c) As (b) but with or $(CH_3)_2CH_2CH_3$) as reference reactant. The rate coefficient ratio, $k(NO_3 + (HCO)_2) / k(NO_3 + (CH_3)_2CH_2CH_3) = 3.1 \pm 0.2$, was placed on an absolute basis using $k(NO_3 + (CH_3)_2CH_2CH_3) = 1.1 \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ (IUPAC, current recommendation).

Preferred Values

 Parameter	Value	T/K
k/cm^3 molecule ⁻¹ s ⁻¹	4×10^{-16}	290 – 350 K

Reliability

The studies of the reaction between NO₃ and glyoxal, $(HCO)_2$, were measured by the same group (Talukdar et al., 2011), who obtained satisfactory agreement between absolute and relative methods covering a large range of pressures. The authors suggest that the error associated with the absolute measurement of this slow reaction at 296 and 353 K are too large to warrant determination of the temperature dependence. We therefore prefer a temperature independent value of 4×10^{-16} cm³ molecule⁻¹ s⁻¹ with extended error limits. The reaction products were not determined, but the authors argue that H-abstraction will dominate.

References

- IUPAC, Task group on atmospheric chemical kinetic data evaluation. (Ammann, M., Atkinson, R., Cox, R.A., Crowley, J.N., Herrmann, H., Jenkin, M.E., Mellouki, W., Rossi, M. J., Troe, J. and Wallington, T. J.) http://iupac.pole-ether.fr, 2015.
- Talukdar, R. K., Zhu, L., Feierabend, K. J., and Burkholder, J. B.: Atmos. Chem. Phys. 11, 10837-10851, 2011.