IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet NO3 AROM1

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

This data sheet created August 2008.

$NO_3 + C_6H_6$ (Benzene) \rightarrow products

Rate coefficient data

k/cm³ molecule-1 s-1	Temp./K	Reference	Technique/ Comments
Relative Rate Coefficients $\leq 5 \times 10^{-17}$ $\leq 2.7 \times 10^{-17}$ $< 6 \times 10^{-17}$	300 298 ± 1 298 ± 1	Japar and Niki, 1975 Atkinson et al., 1984a Atkinson et al., 1984b	RR (a) RR (b) RR (c)

Comments

- (a) NO₃ radicals were generated from the thermal decomposition of N₂O₅. The experimental data were relative to the equilibrium coefficient K for the NO₃ + NO₂ \leftrightarrow N₂O₅ reactions, and are placed on an absolute basis by use of $K = 2.15 \times 10^{-11}$ cm³ molecule⁻¹ at 300 K (IUPAC, current recommendation).
- (b) NO₃ radicals were generated from the thermal decomposition of N₂O₅. The concentrations of benzene and ethene (the reference compound) were measured by GC, and a rate coefficient ratio of $k(NO_3 + benzene)/k(NO_3 + ethene) \le 0.13$ obtained. This rate coefficient ratio is placed on an absolute basis by use of a rate coefficient of $k(NO_3 + ethene) = 2.1 \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ at 298 K (IUPAC, current recommendation).
- (c) NO₃ radicals were generated from the thermal decomposition of N₂O₅. The concentrations of toluene and *n*-heptane (the reference compound) were measured by GC. The measured rate coefficient ratio of $k(NO_3 + benzene)/k(NO_3 + n-beptane) < 0.4$ is placed on an absolute basis by use of a rate coefficient of $k(NO_3 + n-beptane) = 1.5 \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ at 298 K (Atkinson and Arey, 2003).

Preferred Values

 $k < 3 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$

Comments on Preferred Values

All three room temperature relative rate measurements (Japar and Niki, 1975; Atkinson et al., 1984a,b) obtained only upper limits to the rate coefficient. These studies are the basis for the preferred value.

References

Atkinson, R. and Arey, J.: Chem. Rev., 103, 4605, 2003.

Atkinson, R., Plum, C. N., Carter, W. P. L., Winer, A. M. and Pitts Jr., J. N.: J. Phys. Chem., 88, 1210, 1984a.

Atkinson, R., Carter, W. P. L., Plum, C. N., Winer, A. M. and Pitts Jr., J. N.: Int. J. Chem. Kinet., 16, 887, 1984b.

IUPAC,: http://iupac.pole-ether.fr, 2013.

Japar, S. M. and Niki, H.: J. Phys. Chem., 79, 1629, 1975.