IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet HOx_VOC34

Website: <u>http://iupac.pole-ether.fr</u>. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

This data sheet last evaluated: 18th December 2007 (with revision of the preferred values).

$HO + CH_3OOH \rightarrow H_2O + CH_2OOH$	(1)
\rightarrow H ₂ O + CH ₃ OO	(2)

 $\Delta H^{\circ}(2) = -139 \text{ kJ} \cdot \text{mol}^{-1}$

k/cm^3 molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients			
$2.93 \times 10^{-12} \exp[(190 \pm 14)/T]$	223-423	Vaghjiani and Ravishankara, 1989	PLP-LIF (a)
5.54×10^{-12}	298		
$k_2 = 1.78 \text{ x } 10^{-12} \exp[(220 \pm 21)/T]$	203-348	Vaghjiani and Ravishankara, 1989	PLP-LIF (a)
$k_2 = (3.85 \pm 0.23) \times 10^{-12}$	298		
$k_2 = (9.0 \pm 0.2) \times 10^{-12}$	295	Blitz et al., 2005	PLP-LIF (b)
Relative Rate Cofficients			
$(1.02 \pm 0.08) \ge 10^{-11}$	~298	Niki et al., 1983	RR (c)
$(1.02 \pm 0.11) \ge 10^{-11}$	~298	Niki et al., 1983	RR (d)
Branching Ratio			
$k_1/k_2 = 0.77 \pm 0.16$	~298	Niki et al., 1983	(e)

Rate coefficient data ($k = k_1 + k_2$)

Comments

- (a) H¹⁶O, H¹⁸O and DO radicals were generated by flash photolysis or pulsed laser photolysis of the following precursors: for H¹⁶O; CH₃OOH, H₂¹⁶O, and O₃-H₂¹⁶O; for H¹⁸O; H₂¹⁸O, and O₃-H₂¹⁸O; and for DO; D₂O, O₃-D₂O, and O₃-D₂, and H¹⁶O, H¹⁸O and DO radicals were monitored by LIF. Rate coefficients ($k_1 + k_2$) were obtained from measurements of the decay rates of H¹⁸O and DO radicals in the presence of excess CH₃OOH. Rate coefficients k_2 were obtained from the decay rates of H¹⁶O radicals in the presence of CH₃OOH. The CH₂OOH radical formed in reaction channel (1) rapidly decomposes to HO + HCHO, and hence the use of H¹⁶O allowed only the rate coefficient k_2 to be measured. The purity of the CH₃OOH in the synthesized sample was stated to be >96%, and the concentration of CH₃OOH in the flowing gas stream was monitored by UV absorption at 213.9 nm either prior to, or in some cases after, entering the reaction cell.
- (b) HO radicals were generated by pulsed laser photolysis of CH₃OOH at 248 nm, and were monitored by LIF. Since the CH₂OOH radical formed in reaction channel (1) rapidly decomposes to HO + HCHO (Vaghjiani and Ravishankara, 1989) the use of H¹⁶O allowed only the rate coefficient k_2 to be measured. The purity of the CH₃OOH in the synthesized sample was determined using reverse phase HPLC, and was shown to be <99.5%. The concentration of CH₃OOH was not measured in the reactant gas stream.
- (c) HO radicals were generated by the photolysis of CH_3ONO or C_2H_5ONO in air. The concentrations of CH_3OOH and ethene (the reference compound) were measured by FTIR absorption

spectroscopy. The measured rate coefficient ratio of $k(\text{HO} + \text{CH}_3\text{OOH})/k(\text{HO} + \text{ethene}) = 1.20 \pm 0.09$ is placed on an absolute basis by use of a rate coefficient of $k(\text{HO} + \text{ethene}) = 8.52 \times 10^{-12} \text{ cm}^3$ molecule⁻¹ s⁻¹ at 298 K and atmospheric pressure of air (Atkinson, 1997).

- (d) HO radicals were generated by the photolysis of CH₃ONO in air and the concentrations of CH₃OOH and CH₃CHO (the reference compound) were measured by FTIR absorption spectroscopy. The measured rate coefficient ratio of $k(\text{HO} + \text{CH}_3\text{OOH})/k(\text{HO} + \text{CH}_3\text{CHO}) = 0.68 \pm 0.07$ is placed on an absolute basis by use of a rate coefficient of $k(\text{HO} + \text{CH}_3\text{CHO}) = 1.5 \times 10^{-11} \text{ cm}^3$ molecule⁻¹ s⁻¹ at 298 K (IUPAC, current recommendation).
- (e) Derived from the yield ratio of (HCHO + CO)/(CH₃ONO + CH₃ONO₂) in experiments carried out using ethyl nitrite as the HO radical precursor and at O₂ partial pressures of 20-140 Torr, extrapolated to zero [O₂]. Channel (1) leads to HCHO, with CO being formed from the secondary reaction HO + HCHO, while channel (2) leads to CH₃O radicals which at low O₂ concentrations react with NO and NO₂ to form methyl nitrite and methyl nitrate. At higher O₂ concentrations, the CH₃O + O₂ reaction leads to HCHO formation, hence the extrapolation to zero [O₂]. The measured branching ratio corresponds to $k_1/k = 0.435 \pm 0.10$.

Preferred Values

 $k = 1.0 \text{ x } 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$

 $k = 5.3 \times 10^{-12} \exp(190/T) \text{ cm}^3$ molecule⁻¹ s⁻¹ over the temperature range 220-430 K.

 $k_1/k = 0.4$, independent of temperature over the range 220-430 K.

Reliability

 $\Delta \log k = \pm 0.3$ at 298 K. $\Delta (E/R) = \pm 200$ K. $\Delta (k_1/k) = \pm 0.15$ over the temperature range 220-430 K.

Comments on Preferred Values

There are significant discrepancies between the results of the studies of Niki et al. (1983), Vaghjiani and Ravishankara (1989) and Blitz et al. (2005). The room temperature values of k_2 measured directly (Vaghjiani and Ravishankara, 1989; Blitz et al., 2005) or derived from the branching ratio and overall rate coefficient (Niki et al., 1983) are (3.85 ± 0.23) x 10⁻¹² cm³ molecule⁻¹ s⁻¹ (Vaghjiani and Ravishankara, 1989), (5.8 ± 1.5) x 10⁻¹² cm³ molecule⁻¹ s⁻¹ (Niki et al., 1983) and (9.0 ± 0.2) x 10⁻¹² cm³ molecule⁻¹ s⁻¹ (Blitz et al., 2005). The two room temperature measurements of *k* disagree by a factor of 1.85 (Niki et al., 1983; Vaghjiani and Ravishankara, 1989), while the branching ratio $k_2/k = 0.70$ obtained from the separate measurements of k_2 and *k* by Vaghjiani and Ravishankara (1989) is in reasonable agreement with that of Niki et al. (1983) of 0.565 ± 0.10.

The reasons for these discrepancies concerning the room temperature rate coefficients k_2 and k are not presently known. Since the relative rate method used by Niki et al. (1983) does not require a knowledge of the absolute concentration of CH₃OOH (but does require that CH₃OOH can be monitored free of interferences from other species), then the rate coefficient k measured by Niki et al. (1983) is used for the preferred 298 K value. Although confirmatory studies are clearly required, the temperature dependence obtained by Vaghjiani and Ravishankara (1989) is accepted, with large uncertainties, and the pre-exponential factor is adjusted to fit the preferred 298 K value. The preferred branching ratio is derived from the data of Niki et al. (1983) and Vaghjiani and Ravishankara (1989), again with a large uncertainty. Clearly, further studies of this reaction are needed.

References

Atkinson, R.: J. Phys. Chem. Ref. Data, 26, 215, 1997.

Blitz, M. A., Heard, D. E. and Pilling, M. J.: J. Photochem. Photobiol. A; Chem., 176, 107, 2005. IUPAC,: http://iupac.pole-ether.fr, 2013. Niki, H., Maker, P. D., Savage, C. M. and Breitenbach, L. P.: J. Phys. Chem., 87, 2190, 1983.

Vaghjiani, G. L. and Ravishankara, A. R.: J. Phys. Chem., 93, 1948, 1989.