IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet V.A1.42 HI42

Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hard copy without explicit written permission.

The citation for this data sheet is: IUPAC Task Group on Atmospheric Chemical for Gas Kinetic Data Evaluation, http://iupac.pole-ether.fr.

This data sheet last evaluated: September 2007; last change in preferred values: September 2007.

$HOCl + HBr(ice) \rightarrow BrCl + H2O$

Uptake coefficient data

Parameter	Temp./K	Reference	Technique/Comments
<i>Experimental uptake coefficients: γ, γ_0</i>			
γ_{SS} (HOCl) = 0.06 - 0.38 γ_{SS} (HOCl) = 0.01 - 0.07	189 220	Chu and Chu, 1999	CWFT-MS(a)

Comments

(a) The ice was condensed from the vapor phase at the experimental temperature. Ice film thickness was $2.4 \pm 0.2 \ \mu\text{m}$ at 189 K and $42 \pm 4 \ \mu\text{m}$ at 220 K; flow tube pressure was 0.37 mbar. Cited values for γ are not corrected for pore diffusion which reduced the value of γ by a factor of 2 to10. Uptake of HOC1 ($P_{\text{HOC1}} = 9.7 \ \text{x} \ 10^{-7} \ \text{mbar}$) was continuous, and γ_{SS} (HOCl) increased with [HBr]_g; The range of values given in the table at 188 K were obtained with P_{HBr} over range (1.5 - 88.0) x 10^{-7} mbar, and at 220 K the values given in the table were obtained with P_{HBr} over range (1.1 - 15.9) x 10^{-6} mbar. These trends were deduced to be consistent with an Ely-Rideal mechanism for the surface reaction, but the parameterisation of surface [HBr] in terms of P_{HBr} was not given.

Preferred values

Parameter	Parameter Value	
α_s (HOCl)	0.3	180 - 220
γ(HOCl)	$1/(\alpha_s + 2.7/\theta_{\rm HBr})_{\rm s}$	180 - 220
$\theta_{\rm HBr}$ / molecule cm ⁻²	4.14 x10 ⁻¹⁰ x [HBr] ^{0.88}	
Reliability		
$\Delta(\alpha_s)$	± 0.15	188

Comments on preferred values

The single study by Chu and Chu (1999) reports rapid irreversible uptake of HOCl onto ice films doped with HBr, in contrast to the uptake of HOCl on pure ice films, which is reversible. Products BrCl and Br₂ were observed but their yield was <<100%. The uptake coefficient increased with P_{HBr} at both 188 K and 220 K but was much lower for equivalent P_{HBr} at 220 K (see Fig 1). However this may refect an effect of ice film thickness ($2.4 \pm 0.2 \mu m$ at 189 K and 42 ± 4 µm at 220 K); the conditions of these experiments corresponded to the HBr hydrate stability region (Chu and Chu, 1997), where *surface* [HBr] may be lower on a thicker film due to transfer into the bulk. The preferred value of α_s for the range 188-220 K is the value obtained at high P_{HBr} on the thinner film at 188K.

The evidence for Ely-Rideal kinetics suggested by Chu and Chu (1999) is not convincing and HBr adsorption doesn't follow a Langmuir model under the laboratory experimental conditions used (see data sheet for HBr + ice). Nevertheless, a reasonable fit to the data from Chu and Chu (1997) is obtained using the IUPAC recommended expression for θ_{HBr} at 188 K (= 4.14 x10⁻¹⁰ [HBr]^{0.88}), in a Langmuir-Hinshelwood model for the uptake with $N_{max} = 3 \times 10^{14}$ molecule cm⁻², $\alpha_s = 0.3$ and ks = 3.3 x 10⁻¹⁵ cm² molecule⁻¹ (see Fig 1). These parameters give the recommend expression for γ at 188 K, but this model cannot be used at other temperatures in the absence of an HBr adsorption isotherm.

References

Chu, L. and Chu, L.T.: J. Phys. Chem. 103 A, 691 (1999).

Figure 1. The recommended parameterization for P(HBr) dependence of the uptake coefficient of HOCI on ice in the presence of HBr at 188 K.