IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet V.A5.5 HNDT5

Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hard copy without explicit written permission. The citation for this data sheet is: IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, http://iupac.pole-ether.fr.

Data sheet last evaluated: March 2008; last change in preferred values: March 2008.

$HNO_3 + NAT$

Parameter	Temp./K	Reference	Technique/ Comments
Experimental uptake coefficients: γ , γ_0			
$\gamma_0 > 0.3$	191.5	Hanson, 1992	CWFT-CIMS a)
$\gamma_0 > 0.2$	200		
$\gamma_0 > 0.4$	197	Middlebrook et al., 1992	Knud (b)
γ = 0.165 HNO ₃ •3H ₂ O (NAT) 0.145 HNO ₃ •2H ₂ O (NAD) 0.13 HNO ₃ •H ₂ O (NAM)	160-170	Reinhardt, Fida and Zellner, 2003	(c)
Partition coefficients: K(cm)			
No reversible adsorption			

Experimental data

Comments

- (a) HNO₃ deposited on ice condensed from the vapor phase onto the cold flow tube. γ corrected for gas diffusion using estimated diffusion coefficients. Pressure = 0.6 mbar He. Rapid uptake observed, but with increasing surface coverage of HNO₃ the rate of uptake decreased. The steady-state partial pressure of HNO₃ over an ice surface with a coverage of approximately 1 monolayer of HNO₃ was about a factor of five higher than the vapor pressure over NAT, showing that new hydrate was not formed.
- (b) Static chamber with time-dependent FTIR monitoring of depositing NAT film. The thickness of the deposited NAT film was measured by optical interference in the range 4000 cm⁻¹ to 7000 cm⁻¹ assuming a refractive index of 1.45 for NAT. $p_{H2O} = 2 \times 10^{-4}$ mbar and $p_{HNO3} = (5.3-13.3) \times 10^{-7}$ mbar. A doubling of the H₂O left the uptake coefficient unchanged.
- (c) Slow flow reaction cell with DRIFTS for detection of adsorbed species and downstream FTIR for gas phase HNO₃. Total pressure 10-30 mbar. At 170K and $[HNO_3]=(2-5) \times 10^{14}$ molecule cm⁻² continuous uptake was observed with formation of crystalline HNO₃•3H₂O (NAT). Monohydrates and dihydrates formed at higher p_{HNO3} . Uptake coefficient independent of p_{HNO3} .

Preferred Values			
Parameter α _s	Value >0.2	T/K 190 - 240	
Reliability $\Delta \log (\alpha_s)$	± 0.3	190 - 200	

Comments on Preferred Values

There have been few experimental studies of nitric acid interaction with specifically prepared HNO_3 -hydrate surfaces at temperatures and concentrations corresponding to hydrate thermodynamically stability regions. Under these conditions at T< 210 K uptake is continuous and irreversible.

References

Hanson, D. R.: J. Geophys. Res. Lett. 19, 2063 1992. Middlebrook, A.M., Koehler, B.G., McNeill, L.S. and Tolbert, M.A.: Geophys. Res. Lett. 19, 2417 (1992). Reinhardt, H.; Fida, M. and Zellner, R.: J. Mol. Struct. 661-662, 567-577 (2003).