IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet V.A4.3 HSTD3 Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hard copy without explicit written permission. The citation for this data sheet is: IUPAC Task Group on Atmospheric chemical Kinetic Data Evaluation, http://iupac.pole-ether.fr. This data sheet last evaluated: April 2008; last change in preferred values: April 2008. ## HBr + SAT ## **Experimental data** | Parameter | Temp./K | Reference | Technique/ Comments | |--|-------------------|------------------------|---------------------| | Experimental uptake coefficients: γ , γ_0 | | | | | $\gamma_{ss} = 0.25 (10\% \text{ H}_2\text{SO}_4, \text{ frozen})$
= 0.18 (60% H ₂ SO ₄ , frozen)
< 1 x 10 ⁻⁴ (95% H ₂ SO ₄ , frozen) | 190
190
220 | Seisel and Rossi, 1997 | Knud-MS (a) | | Partition coefficients: K(cm) | | | | | No reversible adsorption | | | | #### **Comments** (a) HBr [(2-8) x 10¹¹ molecule cm⁻³]. Uptake of pure HBr on frozen bulk aqueous solutions of defined [H₂SO₄]. No saturation effects observed. ## **Preferred Values** | Parameter | Value | T/K | |-----------------------------|-------|-----| | γ_{ss} | 0.18 | 190 | | | | | | Reliability | | | | $\Delta \log (\gamma_{ss})$ | 0.3 | | # Comments on Preferred Values There appears to be only one experimental study of HBr interaction with specifically prepared H_2SO_4 -hydrate surfaces at temperatures and concentrations corresponding to hydrate thermodynamically stability regions. Under these conditions uptake is continuous and irreversible. There is a strong decrease of γ with increasing concentration of H_2SO_4 in frozen as well as in liquid supercooled H_2SO_4 - H_2O mixtures. #### References Seisel, S. and Rossi, M.J.: Ber. Bunsenges. Phys. Chem. 101, 943 (1997).